ADVISING BOOKLET

FALL 2020

UNDERGRADUATE ADVISING

FALL 2020
This advising booklet provides only the first step toward the design of your Rice education. Your divisional advisor is a crucial ally who will help tailor a plan of study that best fits your inclinations and aspirations.

Student-faculty interaction is a trademark of Rice education. Consult regularly with your divisional advisor, one of the many faculty members waiting to work with you in the coming years.

CONTENTS

2 Introduction to School of Engineering
4 Description of Majors
8 Description of Minors
12 Bioengineering
16 Chemical and Biomolecular Engineering
22 Civil and Environmental Engineering
30 Computational and Applied Mathematics
34 Computer Science
40 Electrical and Computer Engineering
46 Materials Science and NanoEngineering
52 Mechanical Engineering
58 Statistics
64 Major Advisors
65 Divisional Advisors
66 Requirements for Bachelor's Degrees
67 Engineering Courses Accesible to Freshmen

This booklet is intended to give you, as a freshman engineering student, an overview of the undergraduate degree programs in the School of Engineering. It includes some general advice and contact information along with degree summaries and sample degree plans for each engineering degree.

The degree summaries and sample plans will help you compare majors and provide a starting point for mapping out your own course schedule. The booklet is intended as a supplement to, not a replacement for, other department advising materials. Although we have worked hard to make this booklet as accurate as possible, the information in the General Announcements is the final authority on degree requirements and academic regulations at Rice.

Two Kinds of Faculty Academic Advising

Every incoming engineering student is assigned an engineering divisional advisor-a faculty member from the School of Engineering who is associated with a student's residential college and who provides academic advising to those considering engineering majors. You should consult with your divisional advisor prior to registering for classes each semester. You may also consult with major advisors before declaring a major. See page 64 for a complete list of advisors.

When you declare your major, the department will assign you to an academic advisor within the department. Your departmental advisor will help you decide what courses you will take to satisfy your degree requirements and when you should take them.

The School of Engineering strongly encourages students planning engineering majors to declare their majors in the spring semester of their freshman year before registering for the sophomore year. Declaring a major in the freshman year should not discourage you from continuing to discuss degree plans with as many advisors as you wish (divisional or departmental, inside or outside of Engineering). Many students are looking at more than one field in their freshman year. However, if you wait until the end of the sophomore year to choose a major, it may be difficult to complete a degree in four years.

Advanced Placement Credit and the Sample Degree Plans

Many entering freshmen come to Rice with substantial advanced placement course credit, particularly in math, physics and chemistry. Talk with your divisional advisor and the instructors in the relevant courses if necessary, to determine whether your background has prepared you for more advanced courses at Rice. The sample degree plans in this booklet assume that you have no AP or transfer credit. Each sample is also only one of many possible schedules. Talk with your divisional advisor and a department academic advisor if necessary, to begin developing a degree plan that fits your situation and goals.

Freshman Writing Intensive Seminars

Unlike all other courses at Rice, you are assigned a specific semester in which to take a freshman writing intensive seminar (FWIS). Therefore, if you plan to pursue an engineering major, you need to carefully consider these courses during registration to make sure that you are able to get into a section that does not have a time conflict with courses that are required for your major.

In all of the sample schedules throughout this book, the FWIS course is listed in the fall of the freshman year and there is at least one distribution course listed in the spring of the freshman year. If you are assigned to take an FWIS in the spring, you should swap the semesters of the FWIS and a distribution course in the freshman year. Students interested in an engineering-centric FWIS should consider FWIS 188. For further information about the FWIS requirements, please visit http://pwc.rice.edu/.

Selecting an Engineering Major

The Introduction to Engineering Course (ENGI 101) is a 1 credit course designed to help you learn about the types of problems engineers solve in different disciplines and the tools they use to do it. Throughout the course, faculty members from the different engineering programs offered at Rice will talk about their major and describe the career paths available in their fields.

In addition to registering for this course we encourage you to attend research seminars, join student clubs, and talk to your divisional advisor and faculty in the departments that you are interested in. Spend your first year at Rice learning more about the options available to you, and you will be ready to make this decision.

Selecting Courses in the Major

You will see on many of the degree summaries that you often have choices for courses. For example, a degree may require physics, but allow you to choose either PHYS 101 or PHYS 111. Several of the sample plans or degree summaries note these choices so that you are aware of your options. Sometimes a department will specify a preferred course, sometimes not. Consult other department advising materials and/or talk to the department advisors for more information.

International Engineering

Every department in the School of Engineering strongly encourages its students to incorporate international experiences into their education at Rice. Academic advisors in your department can help you determine appropriate course work for study. See engineering.rice.edu/abroad for more information on the best semester to study abroad depending on your major. Planning ahead of time is essential when you want to take advantage of this opportunity. Keep in mind that there are also summer opportunities available to study abroad. See abroad.rice.edu and visit the study abroad office to help you make arrangements.

There are many international experiences available to engineering students. The Oshman Engineering Design Kitchen (OEDK) offers iSEED as an international study abroad opportunity, to work on community- and client- based projects (oedk.rice.edu/minor). Engineers Without Borders (ewb.rice.edu) and Rice 360 Institute for Global Health (rice360.rice.edu) offer international opportunities to tackle real-world design challenges in the developing world. There are also study abroad programs and internship programs through CLIC (https://clic.rice.edu/studyabroad) and the study abroad office. Make sure you take advantage of these opportunities.

DESCRIPTION OF MAJORS
 OFFERED BY DEPARTMENTS

Bioengineering

The overall goal of the B.S. degree in Bioengineering (B.S.B) is to prepare graduates to succeed in professional careers by equipping them with the conceptual and technical expertise sought after by top graduate and medical schools, as well as companies seeking technical skills in bioengineering. Recognizing that graduates may embark on a number of different educational and career paths, the educational objectives that graduates are expected to exhibit or achieve with the B.S.B from Rice University are:

1. Graduates demonstrate technical and/ or professional skills, which may include engineering problem-solving, scientific inquiry, and/or engineering design, to solve challenging problems in bioengineering and related fields.
2. Graduates are accomplished at communicating and working collaboratively in diverse work environments.
3. Graduates seeking further education at graduate, medical or other professional schools find appropriate levels of success in admission to and progression through these programs. Graduates entering professional careers find appropriate career progression and success.

Chemical and Biomolecular Engineering

Our department offers two undergraduate degrees: the Bachelor of Science in Chemical Engineering (B.S.Ch.E) and Bachelor of Arts (B.A.) degree. Only the program leading to the B.S. degree in Chemical Engineering is accredited by the Engineering Accreditation Commission (EAC) of ABET, www.abet.org.

In today's rapidly changing business climate, industrial sectors from petrochemicals to biotechnology and semiconductor manufacturing offer a wide variety of employment opportunities to our graduates. As a result, chemical engineering graduates may get involved with (among others):

- the development of new processes and products for the chemical industry;
- exploration, production and refining of oil and natural gas;
- design and optimization of fabrication facilities for semiconductors or magnetic storage devices;
- production of advanced materials from plastics and fibers to catalysts and biomaterials;
- design of water and air pollution control devices;
- production of pharmaceuticals and biologic devices for medical applications.

Although industry employs the majority of chemical engineering students receiving a bachelor's degree, a large fraction of our graduates continue their education in graduate schools to prepare for academic or industrial R\&D careers, and in medical, law or business schools.

Civil and Environmental Engineering

The oldest of the recognized "disciplines" in engineering, civil and environmental engineering disciplines are very broad and address virtually any system or infrastructure related to earth, water, air, or civilization and their processes. At Rice, CEE offers a choice among four educational foci: environmental engineering, hydrology and water resources, structural engineering and mechanics, and urban infrastructure, reliability and management.

CEE prepares leaders to solve present and future technical and societal problems. We provide a rigorous, coherent curriculum from which students gain an understanding of the physical, mathematical, chemical and biological, as well as socio-economic systems and ethical frameworks that affect engineering research and practice. We emphasize design and the development of professional communication skills and strategies, especially those requiring collaboration and teamwork.

Students gain experience and knowledge from domestic and international experts in academia, research and industry. To prepare for the global workplace, service learning experiences are offered, typically during academic breaks. For example, undergraduate members of Rice's nationally recognized chapter of Engineers Without Borders, a student-run organization, work to bring sustainable technologies to developing regions of the world like Central and South America. The educational experience in CEE is fun and unique because of strong emphasis on student leadership, cross-disciplinary application and access to faculty, and our integration of undergraduate education with cutting-edge research.

Computational and Applied Mathematics

Our graduates have enjoyed an excellent job market for decades and can expect to be hired in engineering consulting, government, regulatory agencies, industry and, with advanced degrees, academia.

In the CAAM undergraduate program, students learn to apply the advanced techniques needed to model and analyze complex physical systems. The curriculum provides a sound grounding in underlying mathematical theory, emphasizes a variety of useful mathematical techniques, and helps students develop proficiency in computational modeling and high performance computing. Graduates with degrees in computational and applied mathematics are in demand in industry, government and academia, where they often join with physical and biological scientists, engineers, and computer scientists to form teams. Such interdisciplinary teams represent the modern approach to dealing with complex problems whose solutions require mathematical and scientific skills.

Computer Science

An education in computer science includes training in systems design, implementation (i.e., programming), mathematics, and the analysis of algorithms, systems and problems. A computer scientist must understand what can be computed, what can be computed quickly, and what can be built. The undergraduate computer science curriculum at Rice includes a core set of courses that teach skills common to all areas in computer science, as well as specialized courses that delve more deeply into specific areas such as artificial intelligence, bioinformatics, computer architecture, databases, graphics, networking, programming language design and implementation, physical algorithms, security and verification. We welcome students with little or no programming experience. Computer science requires the ability to think clearly and analytically; we can teach you the rest.
With computing integrated into every facet of
modern life, a computer science degree can lead to many diverse careers. We develop tools that enable fields such as scientific simulation, financial market analysis, medical imaging and robotic exploration.

Electrical and Computer Engineering

Electrical and computer engineering (ECE) is the creation, innovation and design of technologies in computing, communications, electronics and machine learning. ECE is at the crossroads of hardware and softwarethe integration of these tools to create better, faster, safer technologies for things like cars, aircraft, computers, smartphones and surgical robots. We invent and develop technologies and devices for the betterment of humanity.

ECE's flexible programs educate engineers and scientists to be leaders in academia, industry and government. ECE graduates go on to work in almost every field imaginable, including healthcare, energy, law, the space industry, entertainment and security. The opportunities are broad; the major has many avenues for interdisciplinary learning and collaboration.

Undergraduates are encouraged to participate in research by contacting ECE faculty directly or through the Vertically Integrated Projects (VIP) program. Summer internship opportunities are available in ECE labs and with our industrial affiliates. Additional experiential learning is available through study abroad experiences.

At Rice, ECE faculty rewire and study the brain to combat Parkinson's, epilepsy and PTSD. They build lensless cameras, explore oil reservoirs, and bring wireless technology to the underserved. They push the state-of-the-art in national security, healthcare, data science, photonics, neural engineering, communications and nanotechnology.

Materials Science and NanoEngineering

Materials engineering is concerned with the processing, structure, properties and performance of materials used by society. These include metals and their alloys, semiconductors, ceramics, glasses, polymers, composites and nanomaterials. The materials engineer applies principles of math, physics and chemistry to design, produce, characterize and utilize the materials necessary for today's engineering. The curriculum in the Department of Materials Science and NanoEngineering provides students with the requisite skills and educational background to contribute to the solution of many materials and nanoengineering problems, allow him or her to work in a fascinating field and make it possible for them to become a leaders in one of the most challenging technological areas.

Mechanical Engineering

Mechanical engineering, one of the broadest and most versatile of the engineering professions, generally deals with the relations among forces, work or energy, and power in designing systems to improve the human environment. The products of their efforts may be automobiles or jet aircraft, nuclear power plants or air-conditioning systems, large industrial machinery or household can openers.

The mechanical engineering program is designed to prepare the graduate to assume positions of leadership, qualify for admittance to top level graduate programs, contribute to the advancement of knowledge, and to have a strong understanding of engineering professional and ethical responsibilities.

Statistics

Statistics is concerned with the interrelationships between observation and theory. Thus statistics deals with the formulation and application of the scientific method. Important components of statistical studies include probability, mathematical statistics, model building, statistical computing, quality and process control, time series analysis, regression theory, nonparametric function estimation, experimental design, Bayesian analysis, stochastic processes, sampling theory, biostatistics, bioinformatics, genetics, epidemiology, computational finance, environmetrics, defense analysis and simulation.

The department's goals are to acquaint students with the role played in the modern world by probabilistic and statistical ideas and methods, to provide instruction in the theory and application of techniques that have been found to be commonly useful, and to train research workers in statistics. The undergraduate statistics program is flexible and may be oriented towards theoretical or applied training or towards joint work in a related department, such as biology, economics, education, electrical engineering, computational and applied mathematics, mathematics, political science or psychology.

Statisticians make important contributions in data science, business, finance, bio medicine, economics, engineering, sociology, defense and environmental science. The demand for statisticians at the bachelor's, master's and doctoral levels is one of the highest for any professional group.

DESCRIPTION

OF ENGINEERING-RELATED MINORS AND CERTIFICATES

Computational and Applied Mathematics

The departmental minor in computational and applied mathematics develops a range of skills in mathematical modeling, analysis, and scientific computing that complements any major in science, engineering and economics.

Summary requirements

CAAM 210, (CAAM 334 or CAAM 335),
(CAAM 336 or CAAM 378), three additional
CAAM electives, two at or above the 400
level.
For details, see
https://www.caam.rice.edu/minor

Minor advisors

Jesse Chan, jesse.chan@rice.edu
Keith Cooper, keith@rice.edu
Andrew Schaefer, andrew.schaefer@rice.edu

Energy and Water Sustainability

Sustainability encompasses an approach to design and decision-making that takes into account the economic, social and environmental implications of human activities. This interdisciplinary minor studies the design of safe, secure, sustainable energy and water resources.

Summary requirements

CEVE/ENGI 302, CEVE 307, (CEVE 301/
ECON 480/ENST 480), three electives,
and 1-credit design practicum.
For details, see
https://ceve.rice.edu/sustainability-minor

Minor advisor

Jim Blackburn, blackbur@rice.edu

Financial Computation and Modeling

The interdisciplinary minor in financial computation and modeling (FCAM) prepares students for quantitative positions in the financial industry. Students are prepared in advanced quantitative methodologies and the basics of financial markets.

Summary of requirements

Students take three foundation courses in economics and statistics and three elective courses covering quantitative finance and markets.

For details, see

http://ga.rice.edu/programs

Minor Advisor

Katherine Ensor, ensor@rice.edu
John Dobelman, dobleman@stat.rice.edu
Ted Loch-Temzelides, edt@rice.edu

Global Health Technologies

The minor in global health technologies (GLHT) offers a unique, multidisciplinary program to educate and train students to reach beyond traditional disciplinary and geographic boundaries to understand, address and solve global health disparities.

Summary of requirements

GLHT 201 (Introducton to Global Health), followed by a series of core and elective courses in science/engineering and humanities/social science/policy, culminating in a capstone design course.

For details, see

http://www.rice360.rice.edu/glht-minor

Minor advisors

Meaghan Bond, meaghan.mc.bond@rice.edu
Andrea Gobin, agobin@rice.edu
Yvette Mirabal, ymirabal@rice.edu
Ashley Taylor, ashley.r.taylor@rice.edu

Statistics

In the modern information age, the ability to understand and process data from a variety of sources is critical in every area of human inquiry. The minor in statistics is designed to complement a student's primary area of study. Two tracks are offered: Track A is designed for students with strong mathematical and computational interests; Track B develops a broad understanding of and appreciation for the correct use of statistical methodologies.

Summary of requirements

Three specific courses and three elective courses from statistics at the 300 level or higher.
For details, see
http://statistics.rice.edu/statminor/
Minor advisor
Philip Ernst, philip.ernst@rice.edu

Mathematics

The departmental minor in mathematics develops specific analytical problem solving skills, as well as a logical perspective that is valuable in many science and engineering disciplines.

Summary requirements

Typically MATH 211-212 or 221-222; courses in analysis, linear algebra, and discrete mathematics/algebra; and one additional class at the 300-level or higher.

For details, see

www.math.rice.edu/Academics/
Undergraduate/MathMinor.html

Minor advisors

Zhiyong Gao, zgao@rice.edu
Frank Jones, fjones@rice.edu
Stephen Semmes, semmes@rice.edu
Stephen Wang, sswang@rice.edu

Data Science

The Data Science (DS) minor is interdisciplinary in nature, accessible to all undergraduate students across campus. The minor will develop critical thinking skills and practical capabilities by teaching students to: formulate questions in a discipline that can be answered with data; use tools and algorithms from statistics, applied mathematics, and computer science for analyses; visualize, interpret, and explain results cogently, accurately, and persuasively; understand the underlying social, political, and ethical contexts that are inevitably tied to data-driven decision-making.

Summary requirements

Required courses include 3 foundational courses (MATH 101, MATH 102, COMP
140) and 6 core courses (DSCI 301, DSCI

302, DSCI 303, DSCI 304, DSCI 305)
For details, see
http:/datascience.rice.edu/
data-science-minor
Minor advisors
Arko Barman, arko.barman@rice.edu
Sue Chen, sc131@rice.edu
Rudy Guerra, rguerra@rice.edu
Chris Jermaine, cmj4@rice.edu
Fred Oswald, fred.oswald@rice.edu
Elizabeth Petrick, elizabeth.petrick@rice.edu

Engineering Design
The minor in engineering design prepares students to solve open-ended engineering challenges by giving them myriad opportunities to experience the steps in the design process. The EDES minor capitalizes on strengths in engineering design at Rice - both innovative and successful engineering design courses and unsurpassed facilities that are available for undergraduate engineering students starting in their freshman year. The expertise students gain will complement their academic major and provide a deep understanding and the skill set to successfully embark in engineering design careers.

Summary requirements

Introduction to Engineering Design (ENGI 120/220 or FWIS 188), ENGI 200, ENGI 210, and ENGI 350; two elective courses; participate in 2 different design projects.
For details, see
http://oedk.rice.edu/minor
Minor advisors
Deirdre Hunter, hunterd@rice.edu
Maria Oden, moden@rice.edu
Gary Woods, gary.woods@rice.edu

Rice Center for Engineering Leadership (RCEL) Certificate

The difference between a "really smart" engineer and an engineering leader is the ability to communicate, create a guiding vision, build a high performing team, and develop and execute a shared plan. The RCEL Certificate in Engineering Leadership will set you apart from your peers and provide the skills necessary to succeed in your future career. Through a series of 100-400 level RCEL courses, you will discover your personal strengths, motivations, and aspirations as leaders, learn the principles of ethical engineering leadership, and practice the strategic application of advocacy and decision making skills in an engineering team environment, all while acquiring hands-on experience leading a team through engineering challenges. In addition, RCEL students pick specialized tracks based on career interests and learn key project management skills from PMP© certified instructors and industry professionals.

Summary requirements

Required courses included RCEL 100, RCEL 200, RCEL 241, RCEL 300, RCEL 400, RCEL 450. An additional course must be selected from RCEL 410, RCEL 420, RCEL 430, RCEL 440 based on the specialized track selected.

For details, see

http://rcelconnect.org

Certificate advisor

Kaz Karwowski
kazimir.i.karwowski@rice.edu

BIOE

Bioengineering

WEB LINKS	https://bioengineering.rice.edu/undergraduate- program/degrees-offered (general website)		
FRANK ADVICE	Don't try to rush through this 4-year program. Prerequisites are very important for BIOE classes; since some courses are offered once a year, failure to get the correct prerequisites can put you behind an entire year. You must take ELEC 243 before BIOE 383/5, and MECH 202 before BIOE 372. Get involved in research.		
ADVICE FOR			
STUDENTS WITH AP CREDIT	Take BIOC 201 or a more advanced math (e.g., MATH 211) during your first year. Consider ENGI 120, ENGI 128 or FWIS 188.		
CURRICULA			If you are a pre-med student, consult with Health
:---			
Professions Advising in the Office of Academic			
Advising. There are a few "extra" courses above the			
BIIE major that you must complete as a pre-med			
student.			

RESEARCH	Over 70 percent of our students participate in research either at Rice or at an institution in the Texas Medical Center. When participating in research at Rice, students can either receive credit as BIOE 400 or BIOE 401, or they can be paid. Students conduct research during the school year as well as during the summer. Contact a faculty member directly if you are interested in working in his/her laboratory.
INTERNSHIPS	Internships in industry and other universities are available for all levels of students. Rice BIOE also offers several summer research internship opportunities.
STUDY ABROAD	The best time to study abroad is during the spring semester of the junior year; a few students go during the spring of sophomore year. Typically, students complete technical coursework while abroad. Consult a BIOE advisor early if you are interested in study abroad opportunities.
PROFESSIONAL ORGANIZATIONS	The Biomedical Engineering Society (BMES) has a student chapter at Rice. They plan activities throughout the year that focus on professional development as well as social interactions between all levels of students and faculty. bmes.rice.edu
INTERESTING COURSES FOR NON-MAJORS	The Beyond Traditional Borders program offers a minor in global health technologies. Selected courses for non-majors include GLHT 201, GLHT 360, GLHT 392, GLHT 451, GLHT 452.

B．S．In Bioengineering

Specializations：None available．Students select technical electives to suit their academic interests and career plans．

Sample Degree Plan
THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES． CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN．

FALL			SPRING		
FRESHM	MAN 17 cred	17 credits	FRESH	MAN 17 credre	17 credits
MATH 101 or 105	Single Variable Calculus I	3	MATH 102 or 106	Single Variable Calculus II	3
PHYS 101•	Mechanics w／Lab	4＊	PHYS 102•	－Electricity \＆Magnetism w／Lab	4＊
CHEM 121	General Chemistry I w／Lab	4＊	CHEM 122	General Chemistry II w／Lab	4＊
FWIS	Freshman Writing	3	CAAM 210	Intro．to Eng．Computation	3＊
OPEN	Open elective	3	DIST	Distribution elective	3
SOPHO	MORE 17 cred	17 credits	SOPHOMORE 17 cr		credits
MATH 211 Ord Diff Eqs \＆Linear Algebra CHEM 211 § Organic Chemistry I BIOC 201 Introductory Biology BIOE 440 Statistics for Bioengineers BIOE 252 Bioengineering Fundamentals DIST Distribution elective		3	MATH212	Multivariable Calculus	3
		3	BIOE 391	Numerical Methods	3
		3	ELEC 243	Intro．to Electronics	4＊
		1	BIOE 320	Systems Physiology Lab	1
		4	BIOE 322	Fund Systems Physiology	3
		3	DIST	Distribution elective	3
JUNIOR	R 16 credits		JUNIOR	R 16 credits	16 credits
BIOE 383	Biomed Eng Instrumentation	3	BIOE 330才	Bioreaction Engineering	3
BIOE 385	Biomed Eng Instr Lab	1	BIOE 342	Tissue Culture Lab	1＊
BIOE 370	Biomaterials	3	BIOE 372	Biomechanics	3
BIOC 341\＃	Cell Biology	3	BIOE 332才	Thermodynamics	3
MECH 202	Mechanics／Statics	3	DIST	Distribution elective	3
OPEN	Open elective	3	OPEN	Open elective	3
SENIOR	R 16 credits		SENIOR	15 credits	
BIOE 420才	Transport Phenomena in BIOE	3	BIOE 452	Bioengineering Design II	3
BIOE 442－9	Adv BIOE Labs（2 required）	2	TECH	BIOE technical elective	3
BIOE 451	Bioengineering Design I	4	TECH	BIOE technical elective	3
TECH	BIOE technical elective	3	DIST	Distribution elective	3
DIST	Distribution elective	3	OPEN	Open elective	3
LPAP	Lifetime Physical Activity elective	1			

[^0]| Basic
 General math \& science courses | 37 | |
| ---: | ---: | :--- |
| Elective | Core courses in major | 51 |
| requirements | BIOE technical electives | 9 |
| | Open electives and LPAP | 13 |
| | FWIS and distribution courses | 21 |
| | Minimum credit required for the B.S. | 131 |

Of the 131 total degree credits, the B.S. in Bioengineering requires 97 credits in general math and science courses and core and elective engineering courses.

Major Requirements

NUMBER CREDIT		TITLE
MATH 101/105	3	Single Variable Calculus I/AP or other credit in Calculus I
MATH 102/106	3	Single Variable Calculus II /AP or other credit in Calculus II
MATH 211	3	Ordinary Differential Equations and Linear Algebra
MATH 212	3	Multivariable Calculus
PHYS 101•/111/125	4*	Mechanics w/Lab
PHYS 102••/112/126	4*	Electricity and Magnetism w/Lab
CHEM 121	4*	General Chemistry I w/Lab
CHEM 122	4*	General Chemistry II w/Lab
CHEM 211 ¢	3	Organic Chemistry
CAAM 210	3*	Introduction to Engineering Computation (pre-req to BIOE 252)
MECH 202	3	Mechanics/Statics (pre-req to BIOE 370 and 372)
ELEC 243	4*	Introduction to Electronics (pre-req to BIOE 383)
BIOC 201	3	Introductory Biology
BIOC 341	3	Cell Biology
BIOE 252	4	Bioengineering Fundamentals
BIOE 320	1	Systems Physiology Lab Module
BIOE 322	3	Fundamentals of Systems Physiology
BIOE 330才	3	Bioreaction Engineering
BIOE 332 \ddagger	3	Thermodynamics
BIOE 342	1*	Tissue Culture Laboratory
BIOE 370	3	Biomaterials
BIOE 372	3	Biomechanics
BIOE 383	3	Biomedical Eng Instrumentation (pre-req to BIOE 451)
BIOE 385	1	Biomedical Eng Instrumentation Lab
BIOE 391	3	Numerical Methods
BIOE 420才	3	Transport Phenomena in Bioengineering
BIOE 440	1	Statistics for Bioengineers
BIOE 44X	2	Advanced Bioengineering Labs (2 of 7, see GA)
BIOE 451	4	BIOE Design I (Must take 451 and 452 the same year)
BIOE 452	3	BIOE Design II (Must take 451 and 452 the same year)
TECH electiv**	3	Technical Elective
TECH electiv**	3	Technical Elective
TECH elective**	3	Technical Elective

[^1]
CHBE

Chemical and Biomolecular Engineering

WEB LINKS	https://chbe.rice.edu/undergraduate-program
FRANK ADVICE	Start talking to your advisor as early as possible and explore the many options available to you!
ADVICE FOR	Consider taking more advanced MATH (211/212), organic chemistry or the introductory CHBE courses during your freshman year. Contact Ken Cox (krcox@ rice.edu) for advice.
ALP CREDIT	
CURRICULA	Students following the B.S. program can use their electives to create a specialization or focus area in one of five disciplines: biotechnology/bioengineering, environmental engineering, computational engineer- ing, energy and sustainability engineering, or materials science and engineering. The more flexible B.A. pro- gram allows students to pursue a double major.
BS VERSUS BA	Our department offers two undergraduate degrees: the Bachelor of Science in Chemical Engineering (B.S.Ch.E.) and Bachelor of Arts (B.A.) degree. Only the program leading to the B.S.Ch.E. degree is accredited by the Engineering Accreditation
Commission (EAC) of ABET, http://www.abet.org. The	
B.S.Ch.E. degree is the more appropriate path for stu-	
dents wanting to pursue a professional career in the	
field of chemical and biomolecular engineering. The	
B.A. program is more flexible and allows a student to	
pursue other areas of interest or prepare for profes-	
sional careers in medicine, law or business.	

NOT REQUIRED BUT HIGHLY RECOMMENDED COURSES	Biochemistry, numerical analysis, cell biology, courses on environmental studies (ENST), other courses listed in the specialization areas.
RESEARCH AND INTERNSHIPS	Most ChBE majors participate in undergraduate research, either through the courses (CHBE 495 or CHBE 498) or through summer research internships. For further information on research opportunities talk to ChBE undergraduate advisors or contact directly the faculty whose research interests you. Most students also pursue industrial or national lab internships.
STUDY ABROAD	Study abroad semesters are possible and encouraged. Keep in mind that core ChBE courses are offered only once a year, and some courses are somewhat hard to match. With advanced planning however, several international locations work for ChBE students, who commonly go abroad in their sophomore or junior spring terms.
PROFESSIONAL ORGANIZATION	The American Institute of Chemical Engineers (AIChE) has a very active student chapter at Rice that provides real-world experience with internships at sponsor companies, talks on technical, career, and professional topics, scholarships, etc. See http://aiche.rice.edu for details on membership, meetings and more.

B.A. In Chemical Engineering

Specializations: Not Applicable

Sample Degree Plan

THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

FALL

FRESH	M A N 18 cre	18 credits	FRESHMAN 17 cred		
MATH 101 or 105	Single Variable Calculus I	3	MATH 102 or 106	Single Variable Calculus II	3
PHYS $10{ }^{-1}$ or 111	Mechanics w/Lab	4*	$\begin{gathered} \text { PHYS } 102 \cdot \bullet \\ \text { or } 112 \end{gathered}$	Electricity \& Magnetism w/Lab	4*
CHEM 121	General Chemistry I	3	CHEM 122	General Chemistry II	3
CHEM 123	Lab	1	CHEM 124	Lab	1
FWIS	Freshman Writing	3	DIST	Distribution elective	3
OPEN	Open elective	3	OPEN	Open elective	3
LPAP	Lifetime Phys Activity elective	1			

[^2]| BASIC | General math \& science courses | 41 |
| ---: | ---: | :--- |
| REQUIREMENTS | Core courses in major | 31 |
| ELECTIVE | Open electives and LPAP | 39 |
| REQUIREMENTS | FWIS and distribution courses | 21 |
| | Minimum credit required for the B.A. | 132 |

Of the 132 total degree credits, the B.A. in Chemical Engineering requires 72 credits in general math and science courses and core courses.

Major Requirements

NUMBER CREDIT TITLE		
MATH 101/105	3	Single Variable Calculus I/ AP or other credit in Calculus I
MATH 102/106	3	Single Variable Calculus II /AP or other credit in Calculus II
MATH 211	3	Ordinary Differential Equations and Linear Algebra
MATH 212	3	Multivariable Calculus
CAAM 336	3	Differential Equations in Science and Engineering
PHYS 101•/111	4*	Mechanics w/Lab
PHYS 102••/112	4	Electricity and Magnetism w/Lab
CHEM 111/121	3	General Chemistry I
CHEM 123	1	Lab
CHEM 112/122	3	General Chemistry II
CHEM 124	1	Lab
CHEM 211 §	3	Organic Chemistry
CHEM 217	1	Organic Chem Lab for Chem Engineers/Organic Chem Lab
CHEM 212 $\ddagger / 301 / 302$	6	Organic/Physical Chemistry (2 required)
CHBE 301	3	Chemical Engineering Fundamentals
CHBE 303	2^{*}	Computer Programming in Chemical Engineering
CHBE 305	3*	Computational Methods in Chemical Engineering
CHBE 343	3*	Chemical Engineering Lab I
CHBE 350	1	Process Safety in Chemical Engineering
CHBE 390	3	Kinetic and Reactor Design
CHBE 401	3	Transport Phenomena I
CHBE 402	3	Transport Phenomena II
CHBE 403	4^{*}	Design Fundamentals
CHBE 411	3	Thermodynamics I
CHBE 412	3	Thermodynamics II

[^3]
B.S. In Chemical Engineering

Specializations: Bioengineering Computational Engineering
Environmental Engineering Materials Science and Engineering Energy and Sustainability Engineering Engineering Breadth

Sample Degree Plan

THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

SEN IOR	16 credits		S EN IO R	16 credits	
CHBE 403	Design Fundamentals	4^{*}	CHBE 404	Product and Process Design	4
CHBE 443	Chemical Engineering Lab II	3^{*}	DIST	Distribution elective	3
CHBE 470	Process Dynamics and Control	3	OPEN	Open elective	3
SPEC	CHBE specialization area elec	3	OPEN	Open elective	3
OPEN	Open elective	3	OPEN	Open elective	3

* In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
- When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
-• When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.
§ When registering for CHEM 211, you must also register for CHEM 213, the discussion section for 211.
\ddagger When registering for CHEM 212, you must also register for CHEM 214, the discussion section for 212.

BASIC REQUIREMENTS	General math \& science courses Core courses in major	$\begin{aligned} & 41 \\ & 44 \end{aligned}$
ELECTIVE	Specialization area courses	12
REQUIREMENTS	Open electives and LPAP	14
	FWIS and distribution courses	21
	mum credit required for the B.S.	132

Of the 132 total degree credits, the B.S. in Chemical Engineering requires 85 credits in general math and science courses and core courses.

Major Requirements

NUMBER	RED	TITLE
MATH 101 or 105	3 3	Single Variable Calculus I/AP or other credit in Calculus I
MATH 102	3	Single Variable Calculus II/AP or other credit in Calculus II
or 106	3	
MATH 211	3	Ordinary Differential Equations and Linear Algebra
MATH 212	3	Multivariable Calculus
CAAM 336	3	Differential Equations in Science and Engineering
PHYS 101/111	4	Mechanics w/Lab
PHYS 102••/112	4	Electricity and Magnetism w/Lab
CHEM 111/121	3	General Chemistry I
CHEM 123	,	Lab
CHEM 112/122	3	General Chemistry II
CHEM 124	1	Lab
CHEM $211 \S$	3	Organic Chemistry
CHEM 217	1	Organic Chemistry Lab for Chem Engineers
CHEM 212 $\ddagger / 301 / 302$	6	Organic/Physical Chemistry (2 required)
CHBE 301	*	Chemical Engineering Fundamentals
CHBE 303	2^{*}	Computer Programming in Chemical Engineering
CHBE 305	3^{*}	Computational Methods in Chemical Engineering
CHBE 310	3	Fundamentals of Biomolecular Engineering
CHBE 343	3*	Chemical Engineering Labl
CHBE 350	1	Process Safety in Chemical Engineering
CHBE 390	3	Transport Phenomena I
CHBE 401	-	Kinetics and Reactor Design
CHBE 402	3	Transport Phenomena II
CHBE 403	4^{*}	Design Fundamentals
CHBE 404	4^{*}	Product and Process Design
CHBE 411	3	Thermodynamics I
CHBE 412	3	Thermodynamics II
CHBE 443	3*	Chemical Engineering Lab II
CHBE 470	3	Process Dynamics and Control
SPEC	3	CHBE specialization area elective
SPEC	3	CHBE specialization area elective
SPEC	3	CHBE specialization area elective
SPEC	3	CHBE specialization area elective

[^4]
CEE

Civil and Environmental Engineering

WEB LINKS	https://ceve.rice.edu/undergraduate-program
FRANK ADVICE	Make a 4-year plan early on to know what the major entails and update as you go. Consult with advisors if in doubt. Don't overload your schedule in the first two semesters; try to get the requisites out of the way and aim to take 15-18 credits per semester. Take suggested elective, CEVE 101 in the freshman year to get a broad overview of courses and research in the department. Take CEVE 481 in the fall term and CEVE 480 in the spring of your senior year. Try studying in groups, after your own reviews, to enhance learning and critical discussion skills. Join and actively participate in stu- dent and professional organizations.
STUDENTS FITH	
AP CREDIT	With at least a 4 on AP exams, you may not need to take courses such as Physics, Chemistry, Calculus or Biology. If you feel you are ready, you can take higher level courses or honors courses. You can also get started with your master's degree in the last one to two years.
GRADUATION	Students are responsible for making certain that their plan of study meets all degree and major requirements. These requirements are found in the General Announcements. Students have the option of following either their matricula- tion or graduation year requirements.
BUEMENTS	

RESEARCH	Students are encouraged to seek undergraduate research experience with CEE faculty members. Explore research opportunities early by talking to professors and express- ing interest in their work. CEVE 101 will introduce you to CEE faculty and their research areas.
INTERNSHIPS	Students are encouraged to apply for summer intern- ships.The ASCE student chapter and the Center for Career Development's job fairs are great resources. Internships are not limited to engineering firms, but have more leverage if related to your career focus.
STUDY ABROAD	While challenging, study abroad is possible for engi- neers. Required Rice courses may not be offered at universities abroad. Plan to travel in the spring of the sophomore year or fall of the junior year. Consider joining Engineers Without Borders and implement engineering projects in developing countries. Travel is typically during scheduled breaks.
PROFESSIONAL	ASCE (American Society of Civil Engineers) stu- dent chapter, EWB (Engineers Without Borders), Chi Epsilon Honor Society, Concrete Canoe Club, Earthquake Engineering Research Institute (EERI), and the Society of Women Engineers, among many others. Visit https://studentcenter.rice.edu/club-listings.
STUDENT CLUBS	

B.A. In Civil \& Environmental Engineering

(Track E: Environmental Core Curriculum)

Specializations: Courses labeled as SPEC cover topics in which environmental engineering and other disciplines share a common interest. Take 7 courses from electives approved by an advisor assigned by the CEE Dept., including 4 from one specific focus area. Of these 7 electives, 4 must be 300 level courses or above, and 2 of these upper-division courses must be from the CEE curriculum. Examples of areas of specialization include environmental science and engineering, civil engineering, biology, chemical engineering, chemistry, economics or management.

Sample Degree Plan
THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

FALL

SPRING

FRES H M A N	16	credits		FRES H M A N	17
Credits					
CHEM 121	General Chemistry I	3	CHEM 122	General Chemistry II	3
CHEM 123	General Chemistry w/ Lab	1	CHEM 124	General Chemistry w/ Lab	1
MATH 101	Single Variable Calculus	3	MATH 102	Single Variable Calculus II	3
PHYS 101	Mechanics w/ Lab	4	PHYS 102	Electricity and Mag. w/ Lab	4
PHYS 103	Mechanics Discussion	0	PHYS 104	Electricity and Mag. Disc.	0
OPEN	Open elective	2	OPEN	Open elective	3
FWIS	First Year Writing	3	OPEN	Open elective	3
	Intensive Seminar				

S OP H O M ORE	15 credits		SOP H O M OR E	15 credits	
CAAM 210	Intro to Eng Computation	3	CEVE 307	Energy and the Environment	3
CEVE 310	Pr. of Env. Eng.	3	SPEC	Specialty focus any dept.	3
DIST	D1 Distribution elective	3	SPEC	Specialty focus any dept.	3
DIST	D1 Distribution elective	3	DIST	Distribution Elective	3
OPEN	Open elective	3	OPEN	Open elective	3

J U N IO R	15	credits	J U N I O R		14 credits
SPEC	Specialty focus any dept.	3	CEVE 315	Urban Water Systems	3
SPEC	Specialty focus any dept.	3	CEVE 316	Urban Water Systems Lab	1
OPEN	Open elective	3	CEVE 412	Hydrology and Water Resorc. Eng.	3
OPEN	Open elective	3	DIST	D2 Distribution elective	3
OPEN	Open elective	3	LPAP	Lifetime Physical Activity Program	1
			OPEN	Open elective	3

SE N IOR	15 credits			S E N IO R	15 credits
SPEC	Specialty focus any department	3	CEVE 401	Strength of Materials Lab	3
DIST	D2 Distribution Elective	3	SPEC	Specialty focus any department	3
OPEN	Open elective	3	SPEC	Specialty focus any department	3
OPEN	Open elective	3	DIST	D2 Distribution Elective	3
OPEN	Open elective	3	OPEN	Open Elective	3

Basic	General math \& science courses	25
requirements	Core courses in major	16
Elective	Specialization area courses	21
requirements	Open electives FWIS and LPAP	42
	Distribution courses	18^{\star}
	Minimum credit required for the B.A.	122

Of the 122 credits, the B.A. in Civil and Environmental Engineering requires a minimum of 62 credits in general math and science, core and specialization area courses.
*Our B.A. required Math \& Science includes (3) Distribution III courses, so only 18 additional hours are needed.

Major Requirements

NUMBER CREDIT TITLE		
CAAM 210 or 335 or COMP 110/NSCI 230	3	Introduction to Engineering Computation/Matrix Analysis/ Computation in Science and Engineering/ Computation in Science and Engineering
CHEM 121/123	4*	General Chemistry I w/Lab
CHEM 122/124	4^{*}	General Chemistry II w/Lab
MATH 101/105	3	Single Variable Calculus I/ AP or other credit in Calculus I
MATH 102/106	3	Single Variable Calculus II /AP or other credit in Calculus II
PHYS 101/103 or	4	Mechanics w/Lab
PHYS 102/104	4*	Electricity and Magnetism w/Lab
CEVE 307	3	Energy and the Environment
CEVE 310	3	Principles of Environmental Engineering
CEVE 315	3	Urban Water Systems
CEVE 316	1	Urban Water Systems Lab
CEVE 401	3*	Environmental Chemistry
CEVE 412	3	Hydrology and Water Resources Engineering
SPEC	3	Specialization elective

B.A. In Civil \& Environmental Engineering

(Track C: Civil Core Curriculum)

Specializations: The SPEC courses cover general civil engineering topics. Take 7 courses from electives approved by an advisor assigned by the CEE Dept., including at least 4 with the CEVE designation. Of these 7 electives, 4 must be 300 level courses or above.

Sample Degree Plan
THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

FALL

SOPHOMORE 15 credits
CAAM 210 Intro to Engr. Computation 3

CEVE 211 Engineering Mechanics 3
CEVE 310 Pr. of Env. Eng. 3
DIST D1 Distribution elective 3
$\begin{array}{llllll}\text { OPEN } & \text { Open elective } & 3 & \text { DIST } & \text { D1 Distribution elective } & 3\end{array}$
DIST D2 Distribution elective 3

JUNIOR	15 credits			JUNIOR	16 credits
CEVE 325	Structural Analysis and Modeling	3	CEVE 315	Urban Water Systems	3
SPEC	Specialty focus any dept.	3	SPEC	Specialty focus any dept.	3
DIST	D1 Distribution elective	3	OPEN	Open elective	3
OPEN	Open elective	3	OPEN	Open elective	3
OPEN	Open elective	3	DIST	D2 Distribution elective	3
			LPAP	Lifetime Physical Activity Program	1

SEN		5 credits	SEN		4 credits
SPEC	Specialty focus any dept.	3	SPEC	Specialty focus any dept.	3
OPEN	Open elective	3	SPEC	Specialty focus any dept.	3
OPEN	Open elective	3	DIST	D2 Distribution elective	3
OPEN	Open elective	3	OPEN	Open elective	3
OPEN	Open elective	3	OPEN	Open elective	2

BASIC	General math \& science courses Core Courses in Major	25
REQUIREMENTS	19	
ELECTIVE	Specialization area courses	21
REQUIREMENTS	Open electives, FWIS and LPAP	42
	Distribution courses	18^{\star}

Of the 122 credits, the B.A. in Civil and Environmental Engineering requires a minimum of 62 credits in general math and science, core, and specialization area courses.
*Our B.A. required Math \& Science includes (3) Distribution III courses, so only 18 additional hours are needed.

Major Requirements

NUMBER	CREDIT	TITLE
$\begin{aligned} & \text { CAAM } 210 \text { or } 335 \text { or } \\ & \text { COMP 110/NSCI } 230 \end{aligned}$	3	Introduction to Engineering Computation/Matrix Analysis/ Computation in Science and Engineering/ Computation in Science and Engineering
CHEM 121	4	General Chemistry I w/Lab
CHEM 122	4	General Chemistry II w/Lab
MATH 101/105	3	Single Variable Calculus I/AP or other credit in Calculus I
MATH 102/106	3	Single Variable Calculus II /AP or other credit in Calculus II
PHYS 101/111	4	Mechanics w/Lab/Honors Mechanics w/Lab
PHYS 102/112	4	Electricity and Magnetism w/Lab/Honors Electricity and Magnetism w/Lab
CEVE 211	3	Engineering Mechanics
CEVE 310	3	Principles of Environmental Engineering
CEVE 311	3	Mechanics of Solids and Structures
CEVE 312	1	Structural Analysis and Modeling
CEVE 315	3	Urban Water Systems
CEVE 325	1	Specialization Elective
SPEC	3	Specialization Elective

B.S. In Civil Engineering

Specializations: Environmental Engineering Hydrology and Water Resources
Structural Engineering and Mechanics
Urban Infrastructure, Reliability and Management
Sample Degree Plan
THIS IS ONE GENERIC EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN. (Samples for each of the specialization areas can be found at https://ceve.rice.edu/undergraduate-program)

[^5]| | General math \& science courses | $40-41$ |
| ---: | ---: | :--- |
| Core courses | 24 | |
| BASIC | Focus area courses | 24 |
| REQUIREMENTS | Focus specialization courses | 6 |
| ELECTIVE | Open electives, FWIS and LPAP | 21 |
| REQUIREMENTS | Distribution courses | 18^{\star} |
| | Minimum credit required for the B.S. | $133-134$ |

Of the 133-134 credits, the B.S. in Civil Engineering requires 94 credits in general math and science, core, and specialization area courses.
*Our B.A. required Math \& Science includes (3) Distribution III courses, so only 18 additional hours are needed.

Major Requirements

[^6]
CAAM

Computational and Applied Mathematics

$\left.\begin{array}{r|l}\hline \text { WEB LINKS } & \text { https://www.caam.rice.edu/undergraduate-program } \\ \hline \text { FRANK ADVICE } & \begin{array}{l}\text { CAAM 210 (Introduction to Engineering Computation) } \\ \text { develops important MATLAB skills; most future } \\ \text { CAAM classes require more mathematical analysis } \\ \text { and less programming. Students with a strong math } \\ \text { background and programming experience can } \\ \text { potentially take CAAM 210 in the fall of their } \\ \text { freshman year. }\end{array} \\ \hline \text { ADVICE FOR } & \begin{array}{l}\text { CAAM majors with a 5 on the BC Calculus exam } \\ \text { should strongly consider the Honors Calculus } \\ \text { sequence (MATH 221/222) in place of the MATH 212 } \\ \text { (Multivariable Calculus) requirement. Because the }\end{array} \\ \text { AP CREDIT } \\ \text { content from MATH 212 is spread over both semes- } \\ \text { ters of 221/222 (in greater depth and breadth), } \\ \text { students must complete both 221 and 222 in place } \\ \text { of 212: but most students find the extra effort to be } \\ \text { well worth it. }\end{array}\right\}$

RESEARCH	Many CAAM majors engage in undergraduate research, either with a CAAM professor or beyond (e.g., in the Texas Medical Center). Students often find a research opening by first making a positive impression on professors through active and con- structive participation in class.
INTERNSHIPS	Summer research internships are often available, too. Many students also pursue industrial or lab internships; notices are posted to the CAAM undergrad email list.
STRDY	Study abroad semesters are possible and encouraged.
PROFESSIONAL	The student chapter of the Society for Industrial and Applied Mathematics (SIAM) offers occasional talks on technical, career, and professional development topics. For membership and meeting details, see http://www.caam.rice.edu/~siamchapter/ for details on membership and meetings.
INTERESTING COURSES	
FOR	CAAM 210: Intro to Engineering Computation (mathematical modeling and MATLAB programming) CAAM 334 or 335: Matrix Analysis (matrices, linear
NON-MAJORS	
systems, least squares, eigenvalues)	
CAAM 336: Differential Equations in Science and	
Engineering (Fourier series and finite elements)	
CAAM 378: Intro to Operations Research and	
Optimization (good for math econ (MTEC) majors)	
CAAM 519: Computational Science I (scientific pro-	
gramming with advanced math libraries)	
CAAM 570: Graph Theory (good for COMP and	
MATH majors)	

B.A. In Computational and Applied Mathematics

Specializations: CAAM Majors must complete four quantitative elective courses at the 300 level or above. Two must be at the 400 level or above. Two must be CAAM courses; the others must be drawn from a list of approved elective courses maintained by the Undergraduate Committee. That list, and other information on approved and disallowed elective courses can be found in the Undergraduate Handbook available on the department's web site.

Sample Degree Plan

THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

FALL

FRESHMAN		16 credits	FRESH	MAN 15	15 credits
MATH 101^{\dagger} or 105	Single Variable Calculus I	3	MATH 102 or 106	Single Variable Calculus II	3
DIST	Distribution elective	3	CAAM 210	Intro to Eng Computation	3^{*}
FWIS	Freshman Writing	3	DIST	Distribution elective	3
OPEN	Open elective	3	OPEN	Open elective	3
OPEN	Open elective	3	OPEN	Open elective	3
LPAP	Lifetime Phys Activity elective	1			

S OP H O M ORE	15 credits	S OP H O M ORE		15	credits
CAAM 335	Matrix Analysis	3	CAAM 336	Diff Eqs in Science \& Eng	3
MATH 212	Multivariable Calculus	3	STAT 310	Probability and Statistics	3
DIST	Distribution elective	3	or ECON 307		
OPEN	Open elective	3	DIST	Distribution elective	3
OPEN	Open elective	3	OPEN	Open elective	3
			OPEN	Open elective	3

[^7]| BASIC REQUIREMENTS | General math \& science courses Core courses in major | $\begin{aligned} & 9-12 \\ & 28-30 \end{aligned}$ |
| :---: | :---: | :---: |
| ELECTIVE | Specialization electives | 12 |
| REQUIREMENTS | Open electives and LPAP | 48-50 |
| | FWIS and distribution courses | 21 |
| | he B | |

Of the 120 total degree credits, the B.A. in Computational and Applied Mathematics requires $37-42$ credits in general math and science courses and core courses.

Major Requirements

[^8]
COMP

Computer Science

WEB LINKS	https://cs.rice.edu/undergraduate-program		
FRANK ADVICE	The sample schedule is the best guide, especially for the first few semesters where it's important to take the core courses. But, generally, take the following as early as possible: COMP 140 or 160, 182, 215, and ELEC 220.		
ADVICE FOR	Computer science AP credit does not count toward the major requirements. If you have AP credit for Math, you should take the upper level math require- ments earlier.		
ALTERNATIVE			
CURRICULA	There is a lot of flexibility with the timing of the MATH/CAAM/STAT requirements and the upper-level COMP courses.		
BS VERSUS BA	The B.S. provides more depth than the B.A. The only difference in courses in the first two years is the physics requirements for a B.S. Students should speak with a major advisor about the choice of degrees as the best choice depends largely on circumstances and objectives.		
ROT REQUIRED			
BUT HIGHLY			
RECOMMENDED			
COURSES			Some popular computer science courses include
:---			
COMP 330, 410, 430, 440.			

RESEARCH	Many computer science undergraduates pursue research. The best way to find out about research opportunities is to talk with faculty who work in areas that you are interested in.
INTERNSHIPS	Internships are plentiful in computer science, some of which are posted on the department web site and emailed to majors. Most students have little trouble finding internships if they are interested.
STUDY ABROAD	With advance planning, it's not difficult to study abroad, even if not taking major-related courses while abroad. Most of the project-oriented courses are hard to get transfer credit for, while the math- ematical requirements and theoretical courses are fairly easy to get transfer credit for.
PROFESSIONAL	Rice University Computer Science Club (http://csclub.rice.edu/) CSters (Rice University's Society for Women in Computer Science) (http://csters.rice.edu/) ACM Programming Contest - contact John Greiner (greiner@rice.edu) for info.
INTERESTING COURSES	COMP 140, 160,182, 435, 448
COR NON-MAJORS	COMTIONS

B.A. In Computer Science

Specializations: Not Applicable

Sample Degree Plan
THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

[^9]| BASIC | General math \& science courses

 REQUIREMENTS | 15 |
| ---: | ---: | :--- |
| Core Courses in Major | 40 | |
| ELECTIVE | Specialization electives | 6 |
| REQUIREMENTS | Open electives and LPAP | 39 |
| | FWIS and distribution courses | 21 |
| | Minimum credit required for the B.A. | 121 |

Of the 121 total degree credits, the B.A. in Computer Science requires 61 credits in general math and science courses, core courses and specialization electives.

Major Requirements

[^10]
B.S. In Computer Science

Specializations: One design course and any coherent set of 3-4 CS-related courses with a minimum of 15 credits that is approved by an academic advisor.

Sample Degree Plan

THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

[^11]| BASIC | General math \& science courses | 23 |
| :---: | :---: | :---: |
| REQUIREMENTS | Core courses in major | 40 |
| ELECTIVE | Computer science electives | 6-8 |
| REQUIREMENTS | Engin spec (COMP design \& "cap" courses) | 15 |
| | Open electives and LPAP | 23 |
| | FWIS and distribution courses | 21 |
| | Minimum credit required for the B.S. | 128 |

Of the 128 total degree credits, the B.S. in computer science requires $84-86$ credits in general math and science courses, core courses, CS electives, and design and "cap" courses.

Major Requirements

NUMBER CREDIT TITLE		
MATH 101/105	3	Single Variable Calculus I/AP or other credit in Calculus I
MATH 102/106	3	Single Variable Calculus II/AP or other credit in Calculus II
MATH 211/212/221/222	3	Ordinary Differential Equations \& Linear Algebra/Multivariable Calculus/ Honors Calculus III/Honors Calculus IV
MATH 355/354/ CAAM 335/334	3	Linear Algebra/Honors Linear Algebra/ Matrix Analysis Data Science
$\begin{gathered} \text { STAT } 310 / 312 / 315 \\ \text { or ELEC } 303 \end{gathered}$	3	Probability \& Statistics/Probability \& Statistics for Engineers/ Applied Probability
PHYS 101•/111/125	3-4*	Mechanics w/Lab/General Physics w/Lab
PHYS 102••/112/126	4^{*}	Electricity \& Magnetism w/Lab/General Physics II w/Lab
ELEC 220	4*	Fundamentals of Computer Engineering
COMP 140/130/160	4*	Computational Thinking/Elements of Algorithms and Computation/ Intro to Computer Game Creation
COMP 182	4*	Algorithmic Thinking
COMP 215	4*	Introduction to Program Design
COMP 310	4*	Advanced Object - Oriented Programming And Design
COMP 321	4*	Introduction to Computer Systems
COMP 322	4*	Principles Of Parallel Programming
COMP 382	3	Reasoning About Algorithms
COMP 411/412	4	Advanced Programming Languages/Compiler Construction
COMP 413	4	Distributed Program Construction
COMP 421	4	Operating Systems and Concurrent Programming
COMP Elective	3-4	COMP 300 or above
COMP Elective	3-4	COMP 300 or above
SPEC Design	4	COMP design course (COMP 410/413/460)
SPEC	4	COMP cap course elective
SPEC	4	COMP cap course elective
SPEC	3-4	COMP cap course elective

[^12]
ELEC

Electrical and Computer Engineering

WEB LINKS	https://ece.rice.edu/
FRANK ADVICE	Start with MATH, CHEM, PHYS, and COMP requirements to get a solid background. Some of the sophomore core ELEC courses may be taken freshman year, such as ELEC 220, but often ELEC 241, 242, and 261 are best taken in the sophomore year. See the ECE department undergraduate web page and the IEEE student branch handbook at http://ieee.rice.edu/ for additional sample degree plans.
ADVICE FOR	ELEC 220, ELEC 241, ELEC 242, and ELEC 261 are introductory core courses. Many students take ELUDENTS WITH AP
CREDIT	ELEC or ELEC 220 in freshman year, but depend- ing on one's math background, ELEC 241 and ELEC 242 may be better taken in the sophomore year.
ALTERNATIVE	ECE has four specialization areas: computer engineering (CEE); data science/systems (DS/SYS); neuroengineer- ing (NEURO); and photonics, electronics and nanodevices (PEN). CE focuses on hardware design within computer systems, covering computer architecture, security and storage. DS/SYS seeks to extract meaningful, actionable information from diverse data sources. Applications include wireless communications, digital signal processing, com- puter vision and networking. NEURO seeks to understand and manipulate neural networks, as well as treat diseases and disorders. PEN seeks to more fully understand the interaction of light and matter and apply that knowledge to develop novel devices and technologies.

BS VERSUS BA

ECE offers the traditional B.S. degree for students interested in engineering careers. The program leading to the B.S. is accredited by the Engineering Accreditation Commission (EAC) of ABET, www.abet.org. The program leading to the BA degree is not accredited by the EAC and is often pursued by students as a component of a double major or dual degree program.

NOT REQUIRED BUT HIGHLY RECOMMENDED COURSES

ELEC 262 Introduction to Waves and Photonics
ELEC 447 Introduction to Computer Vision
ELEC 475 Learning from Sensor Data

RESEARCH	There are many opportunities for undergraduate independent and team research in ECE, including ELEC 490: Undergraduate Research Projects. Several faculty have started the Large Scale Vertically Integrated Projects program (VIP) open to all levels. Summer research opportunities are available through Research Experiences for Undergraduates (REU). Contact faculty directly for more information. ECE has a Corporate Affiliates program, ececad.rice.edu, and encourages students to attend the annual event held in spring to meet informally with member companies.
INTERNSHIPS AND	There are many opportunities in electrical and computer engineering for study abroad and international intern- ships. See http://engineering.rice.edu/abroad.
PROFESSIONAL	The Institute for Electrical and Electronics Engineers (IEEE) has an active student chapter and an Eta Kappa ORGANIZATIONS Nu honor society at Rice. See ieee.rice.edu for details on the Friday lunch talk schedule. The IEEE student chapter co-presidents for 2020-2021 are Kunal Rai (ksr3@rice. edu) and Nicole Tan (nt13@ rice.edu). Also, the ECE
Department has an active colloquium series, with many	
events co-sponsored by IEEE Houston chapters chaired	
by ECE faculty.	

B.A. In Electrical Engineering

Specializations: Computer engineering
Data science/Systems
Neuroengineering
Photonics, electronics, and nano-devices

Sample Degree Plan

THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES.
CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

[^13]| BASIC | General math \& science courses | 26 |
| ---: | ---: | :--- |
| Core courses in major | 25 | |
| ELEQUIREMENTS | Engineering specialization electives | 12 |
| Open electives and LPAP | 36 | |
| REQUIREMENTS | FWIS and distribution courses | 21 |
| | Minimum credits required for the B.A. | 120 |

Of the 120 total degree credits, the B.A. in Electrical Engineering requires at least 63 credits in general math and science courses, core courses including design lab and specialization electives.

Major Requirements

[^14]
B.S. In Electrical Engineering

Specialization Areas: Computer engineering
Data science/Systems
Neuroengineering
Photonics, electronics, and nano-devices

Sample Degree Plan
 THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

FALL

FRESHMAN 18	18 credits	FRESHMAN 17 cr		
CHEM 121 General Chemistry I w/Lab	4	ELEC 220	Fund of Computer Engineering	4
or 111		MATH 102	Single Variable Calculus II	3
MATH 101 Single Variable Calculus I or 105	3	or 106 PHYS 102	Electricity \& Magnetism w/Lab	4
COMP 140* Computational Thinking	4	DIST	Distribution elective	3
PHYS 101 Mechanics w/Lab	4	OPEN	Open Elective	3
FWIS Freshman Writing	3			

18 credits					
SENIOR	SEN IOR	15 credits			
ELEC 494	ECE Senior Design	3	ELEC 494	ECE Senior Design	3
SPEC	ECE specialization elective	3	SPEC	ECE specialization elective	3
SPEC	ECE specialization elective	3	SPEC	ECE specialization elective	3
DIST	Distribution elective	3	DIST	Distribution elective	3
OPEN	Open elective	3	OPEN	Open elective	3
OPEN	Open elective	3			

[^15]**Typically approved courses: BIOS 201, CAAM 336, CAAM 378, CHEM 122 with lab, MATH 211, and MATH 222

BASIC	General math \& science courses	33
REQUIREMENTS	Core courses in major	34
ELECTIVE	Engineering specialization electives	$18-24$
OEQUIREMENTS	Open electives and LPAP	$22-28$
	FWIS and distribution courses	21
	Minimum credits required for the B.S.	134

Of the 134 total degree credits, the B.S. in Electrical Engineering requires at least 85 credits in general math and science courses, core courses including the design lab and senior design, and specialization electives.

Major Requirements

NUMBER CREDIT TITLE		
CHEM 121/111	4	General Chemistry I w/Lab/AP or Other Credit Gen. Chemistry I w/Lab
COMP 140*	4	Computational Thinking/Intro to Engineering Computation
ELEC**	3	ECE Math and Science elective
ELEC 220	4	Fundamentals of Computer Engineering
ELEC 241	4	Fundamentals of Electrical Engineering I
ELEC 242	4	Fundamentals of Electrical Engineering II
ELEC 261 or PHYS 202	3	Electronic Materials \& Quantum Devices/Modern Physics
ELEC 301	3	Introduction to Signals
ELEC 303	3	Random Signals
ELEC 305	3	Introduction to Physical Electronics
ELEC 326	3	Digital Logic Design
ELEC 494 (x2)	4	Senior Design
ELEC 327/332/364	3	ECE Design Lab elective
MATH 101/105	3	Single Variable Calculus I/AP or Other Credit Calculus I
MATH 102/106	3	Single Variable Calculus II /AP or Other Credit Calculus II
MATH 212 or 221	3	Multivariable Calculus/Honors Calculus III
$\begin{aligned} & \text { MATH } 354 \text { or } 355 \\ & \text { or CAAM } 334 \text { or } 335 \end{aligned}$	3	Honors Linear Algebra/Linear Algebra or Matrix Analysis Data Science/Matrix Analysis
PHYS 101/111	4	Mechanics w/Lab
PHYS 102/112	4	Electricity and Magnetism w/Lab
SPEC	3-4	ECE Specialization elective
SPEC	3-4	ECE Specialization elective
SPEC	3-4	ECE Specialization elective
SPEC	3-4	ECE Specialization elective
SPEC	3-4	ECE Specialization elective
SPEC	3-4	ECE Specialization elective

[^16]**Typically approved courses: BIOS 201, CAAM 336, CAAM 378, CHEM 122 with lab, MATH 211, and MATH 222.

Materials Science and NanoEngineering

WEB LINKS	https://msne.rice.edu
FRANK ADVICE	Many MSNE students pursue graduate degrees in top graduate schools after earning their B.S. degree, so undergraduate research experiences are quite important. Research intern experiences also help students obtain industrial jobs after graduation.
STUDENTS WITH AP	
CREDIT	Students with AP credit for calculus would do well to move the MATH and CAAM sequence up. If the CAAM sequence can be fully completed in the soph- omore year, this reduces the junior year pressure and also allows for more opportunities to participate in undergraduate research.
ALTERNATIVE	Not applicable. CURRICULA
BS VERSUS BA	Students are encouraged to pursue the B.S. degree instead of the B.A. degree, especially those who plan to pursue a graduate degree or practice engineering.

RESEARCH	Many MSNE majors participate in undergraduate research; some even start during their freshman year. To get involved, speak to a MSNE undergraduate advisor or directly to a MSNE faculty member.
INTERNSHIPS	Summer research internships are often available through individual MSNE research labs, as well as universities abroad. Many students also pursue indus- trial or government lab internships as well. Notices are posted to the MSNE undergrad email list.
STUDY ABROAD	Study abroad and full-time off-campus internships need to be scheduled in the spring semester of the sopho- more and junior years. This avoids conflicts with lab classes and the year-long senior design sequence.
PROFESSIONAL	American Ceramic Society (ACerS) ceramics.org Association for Iron \& Steel Technology (AIST) aist.org
ASM International asminternational.org The Minerals, Metals, and Materials Society (TMS) tms.org	
Rice Undergraduate Materials Science and	
NanoEngineering Society	
materialsociety.blogs.rice.edu	
Rice Center for Engineering Leadership(RCEL)	
rcelconnect.org	

B.A. In Materials Science and NanoEngineering

Specialization Areas: None Available. Students select specialization electives to suit their academic interests and career plans.

Sample Degree Plan
THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE.

FALL

FRESHMAN 15 credi	15 credits	FRESH	M N $\quad 14$ cre	14 credits
PHYS 101• Mechanics w/Lab or PHYS 111	4*	MATH 102	Single Variable Calculus II	3
MATH 101 Single Variable Calculus I or 105	3	$\begin{array}{r} \text { or } 106 \\ \text { PHYS } 102 \end{array}$	-Electr \& Magnetism w/Lab	4*
CHEM 121 General Chem I w/Lab or CHEM 151	4*	or PHY CHEM 122	S 112 General Chemistry II w/Lab	4*
$\begin{array}{ll}\text { FWIS } & \text { Freshman Writing } \\ \text { LPAP } & \text { Lifetime Phys Activity elective }\end{array}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	MSNE 201	Introduction to NanoEngineering	3
SOPHOMORE 15 credi		SOPHO	MORE 15 cre	
MSNE 301 Materials Science for Engineers	3	MATH 212	Multivariable Calculus	3
MATH 211 Ord. Diff. Eqs. \& Linear Algebra	3	DIST	Distribution elective	3
DIST Distribution elective	3	OPEN	Open elective	3
OPEN Open elective	3	OPEN	Open elective	
OPEN Open elective	3	DIST	Distribution elective	3

[^17]| BASIC | General math \& science courses | 28 |
| ---: | ---: | ---: |
| REQUIREMENTS | Core courses in major | 31 |
| ELECTIVE | Open electives and LPAP | 40 |
| REQUIREMENTS | FWIS and distribution courses | 21 |
| | Minimum credit required for the B.A. | 120 |

Of the 120 total degree credits, the B.A. in Materials Science and NanoEngineering requires 59 credits in general math and science courses and core courses.

Major Requirements

NUMBER CREDIT TITLE		
MATH 101/105	3	Single Variable Calculus I/AP or other credit in Calculus I
MATH 102/106	3	Single Variable Calculus II /AP or other credit in Calculus II
MATH 211	3	Ordinary Differential Equations and Linear Algebra
MATH 212	3	Multivariable Calculus
PHYS 101/111	4*	Mechanics w/Lab
PHYS 102••/112	4^{*}	Electricity and Magnetism w/Lab
CHEM 121	4^{*}	General Chemistry I w/Lab
CHEM 122	4*	General Chemistry II w/Lab
MSNE 201	3	Introduction to NanoEngineering
MSNE 301	3	Materials Science for Engineers
MSNE 302	3	Materials Processing
MSNE 304	3	Materials Science Junior Lab
MSNE 311	3	Materials Selection and Design
MSNE 389	1	Ethics \& Safety for Materials Engineers
MSNE 401	3	Thermodynamics in Materials Science
MSNE 402	3	Mechanical Properties of Material
MSNE 406	3	Physical Properties of Solids
MSNE 415/411/417/ ELEC 261/BIOE 370	3	Ceramics and Glasses/Metallography and Phase Relations/Polymer Electronics Electronic Materials/Biomaterials
MSNE 435	3	Crystallography and Diffraction

[^18]- When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
-- When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.

B.S. In Materials Science and NanoEngineering

Specializations:	None Available. Students select specialization electives to suit their academic interests and career plans.
Engineering	
Sciences Electives:	At least four electives for a total of 9 hours of credit approved by a department academic advisor. One basic Math \& Science selected elective at the 200 level or higher (no MSNE or Engineering selected electives), one engineering selected elective (no MSNE) and one Technical selected elective (MSNE or Engineering selected elective).

Sample Degree Plan
 THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

FALL

SPRING

FRESHMAN 18 credit	18 credits	FRESHMAN 17 credits		
MATH 101 Single Variable Calculus I or 105	3	MATH 102 or 106	Single Variable Calculus II	3
PHYS 101• Mechanics w/Lab or 111	4^{*}	PHYS $102 \cdot$ or 112	Electr \& Magnetism w/Lab	4*
CHEM 121 General Chem I w/Lab	4^{*}	CHEM 122	General Chem II w/Lab	4*
FWIS Freshman Writing	3	MSNE 201	Introduction to NanoEngineering	3
LPAP Lifetime Phys Activity elective OPEN Open elective	3	DIST	Distribution elective	3
SOPHOMORE 15 credits		SOPHO	MORE 18 cre	
MECH 202 Mechanics/Statics	3	CAAM 210	Intro to Eng Computation	3
MATH 211 Ord Diff Eqs \& Linear Algebra	3	MATH 212	Multivariable Calculus	3
PHYS 201 Waves \& Optics	3	DIST	Distribution elective	3
or CHEM 211/311		DIST	Distribution elective	3
MSNE 301 Materials Science for Engineers	3	SPEC	Technical selected elective	3
DIST Distribution elective	3	OPEN	Open elective	3

JUNIOR		16 credits	JUNIOR	16 credits	
MSNE 304	Materials Science Junior Lab	3	MSNE 302	Materials Processing	3
MSNE 401	Thermodynamics in Mat Sci	3	MSNE 311	Materials Selection and Design	3
MSNE 406	Physical Properties of Solids	3	CAAM 334	Matrix Analysis for Data Science	3
MSNE 411	Mtllogrphy \& Phase Relations	3*	or Math 355	or CAAM 335***	
MSNE 451	Materials Science Seminar	1	MSNE 389	Ehics and Safety for Mat. Engrs.	1
OPEN	Open elective	3	MSNE 415	Ceramics and Glasses	3
			DIST	Distribution elective	3

S E N IO R	16 credits	SEN I O R	16 credits	
MSNE 402 Mechanical Properties of Materials	3		MSNE 408	Capstone Design II

[^19]| BASIC | General math \& science courses | 40 |
| ---: | ---: | :--- |
| REQUIREMENTS | Core courses in major | 43 |
| ELECTIVE | Specialization electives | 9 |
| OEQUIREMENTS | Open electives and LPAP | 19 |
| | FWIS and distribution courses | 21 |

Of the 132 total credits, the B.S. in Materials Science and NanoEngineering requires 83 credits in general math and science courses and core courses.

Major Requirements

NUMBER CREDIT TITLE		
MATH 101/105	3	Single Variable Calculus I/AP or other credit in Calculus I
MATH 102/106	3	Single Variable Calculus II /AP or other credit in Calculus II
MATH 211	3	Ordinary Differential Equations \& Linear Algebra
MATH 212	3	Multivariable Calculus
PHYS 101•111	4*	Mechanics w/Lab
PHYS 102••/112	4^{*}	Electricity and Magnetism w/Lab
CHEM 121/123	4^{*}	General Chemistry I w/Lab
CHEM 122/124	4^{*}	General Chemistry with II Lab
CAAM 210	3	Introduction to Engineering Computation
CAAM 334/CAAM 335/ MATH $355^{* * *}$	3	Matrix Analysis
MECH 202	3	Mechanics/Statics
PHYS 201/CHEM 211/311	3	Waves and Optics/Organic Chemistry/Physical Chemistry
MSNE 201	3	Introduction to NanoEngineering
MSNE 301	3	Materials Science for Engineers
MSNE 302	3	Materials Processing
MSNE 304	3	Materials Science Junior Lab
MSNE 311	3	Materials Selection \& Design
MSNE 389	1	Ethics \& Safety for Materials Engineers
MSNE 401	3	Thermodynamics in Materials Science
MSNE 402	3	Mechanical Properties of Materials
MSNE 406	3	Physical Properties of Solids
MSNE 407	4	Capstone Design I
MSNE 408	3	Capstone Design II
MSNE 411	3*	Metallography and Phase Relations
MSNE 415	3	Ceramics and Glasses
MSNE 435	3	Crystallography and Diffraction
MSNE 437	1	Crystallography \& Diffraction Lab
MSNE 450	0	Materials Science Seminar
MSNE 451	1	Materials Science Seminar
Elective	3	1 approved Math and Science selected elective (no MSNE or Engineering selected electives)
Elective	3	1 approved technical selected electives (MSNE or Engineering selected electives)
Elective	3	1 approved Engineering selected elective (no MSNE)

[^20]
Mechanical Engineering

WEB LINKS	https://mech.rice.edu/undergraduate-program
FRANK ADVICE	Students interested in pursuing a degree in Mechanical Engineering are encouraged to declare their major early. See an advisor to create your degree plan.
ADVICE FOR	Students with AP credit for calculus are encouraged to take the MATH and CAAM sequences earlier than suggested in the sample degree plan.
CRTEDIT	ALTERNATIVE CURRICULA number of required classes in the B.S.M.E. degree. Students intending to double major should consult an advisor to develop an appropriate program of study.
BS VERSUS BA	Only the B.S. degree is accredited by the Engineering Accreditation Commission (EAC) of ABET, www.abet.org, and is the most direct route toward becoming a licensed professional engineer (PE). The B.A. is recommended for students who will pursue professional careers in medicine, law, or business immediately after their under- graduate education.

RESEARCH	Students are encouraged to speak with their pro- fessors directly regarding undergraduate research opportunities. To learn more about faculty research go to https://mech.rice.edu/research.
INTERNSHIPS	Most students participate in summer internships in industry, especially after sophmore and junior years. Students should register with the Center for Career Development (ccd.rice.edu/) and explore further opportunities on the CCD's RICElink, where potential employers post open positions and internships.
STUDY ABROAD	Study abroad is most feasible in the fall semesters of the sophomore and junior years. This can avoid con- flicts with lab classes (MECH 331, 332) and avoids conflicts with the year-long senior design sequence (MECH 407/408).
PROFESSIONAL	The American Society of Mechanical Engineers (asme.rice.edu/) hosts industry representatives and organizes outreach, service and design proj- ects. The American Institute of Aeronautics and Astronautics (http://aiaa.rice.edu/) organizes activities for students interested in aerospace engi- neering. Many mechanical engineering students are also active in the Rice Engineers Without Borders chapter (ewb.rice.edu/). Leadership positions are often available to freshmen and soph- omores in all of these organizations.
INTERESTING	MECH 454 Computational Fluid Mechanics MECH 498 Introduction to Robotics MECH 594 Introduction to Aeronautics
COURSES FOR	
NON-MAJORS	MENS

B.A. In Mechanical Engineering

Specializations: Not Applicable

Sample Degree Plan
 THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

SENIOR	14 credits	SENIOR	15 credits		
MECH 371	Fluid Mech. I	3	MECH 481	Heat Transfer	3
DIST	Distribution elective	3	OPEN	Open elective	3
OPEN	Open elective	3	OPEN	Open elective	3
OPEN	Open elective	3	OPEN	Open elective	3
OPEN	Open elective	2	OPEN	Open elective	3

[^21]| | BASIC | General math \& science courses |
| ---: | ---: | :--- |
| Core courses in major | 31 | |
| REQUIREMENTS | Open electives and LPAP | 39 |
| ELECTIVE | FWIS and distribution courses | 21 |
| REQUIREMENTS | Minimum credit required for the B.A. | 124 |

Of the 124 total degree credits, the B.A. in Mechanical Engineering requires 64 credits in general math and science courses and core courses.

Major Requirements

NUMBER	CREDIT	TITLE
CAAM 210	3	Introduction to Engineering Computation or MECH 210
CAAM 335	3-4	Matrix Analysis
CAAM 336	3-4	Diferential Equations in Science \& Engineering
CHEM 121	4*	General Chemistry I w/Lab
MATH 101/105	3	Single Variable Calculus I/AP or other credit in Calculus I
MATH 102/106	3	Single Variable Calculus II /AP or other credit in Calculus II
MATH 211	3	Ordinary Differential Equations \& Linear Algebra
MATH 212	3	Multivariable Calculus
PHYS 101•	3^{*}	Mechanics w/ Lab
PHYS 102.*	4*	Electricity and Magnetism w/Lab
MECH 200	3	Classical Thermodynamics
MECH 202	3	Mechanics/Statics
MECH 203	3	Mechanical Engineering Design Tools
MECH 310	3	Rigid Body Dynamics
MECH 315	3	Stress Analysis
MECH 343	4^{*}	Modeling of Dynamic Systems
MECH 350	3	Mechanical Elements
MECH 371	3	Fluid Mechanics I
MECH 420	3	Fundamentals of Control Systems
MECH 481	3	Heat Transfer

[^22]
B.S. In Mechanical Engineering

Specializations: Mechanics/Dynamics, Thermal Fluids, Computational Engineering, Breadth in Mechanical Engineering

Sample Degree Plan
THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN.

FALL

SOPHON	MORE 16 cred	16 credits	SOPHO	MORE 17 cred	17 credits
MATH 211 O	Ordinary Differential Equations	3	MATH 212	Multivariable Calculus	3
MECH 202 M	Mechanics/Statics	3	MECH 200	Classical Thermodynamics	3
MECH 203 M	Mech. Eng. Design Tools	3	MECH 231	Sophomore Lab	1
MECH340 In	Industrial Processing Lab	1	MECH 310	Rigid Body Dynamics	3
OPEN O	Open elective	3	MECH 315	Stress Analysis	3
DIST D	Distribution elective	3	MECH 331 DIST	Junior Laboratory I-Mechanics Distribution elective	1 3
JUNIOR	R 17 cre		JUNIOR	R 15 cre	
CAAM 335 M	Matrix Analysis	3	CAAM 336	Diff Eqs in Science \& Eng	3
MECH 332 J	Junior Lab II - Fluids	1	MECH 350	Mechanical Elements	3
MECH 343 M	Modeling of Dynamic Systems	4*	MECH 420	Fund of Control Systems	3
MECH 371 F	Fluid Mechanics I	3	MECH 481	Heat Transfer	3
DIST Dis	Distribution elective	3	DIST	Distribution elective	3
OPEN Op	Open elective	3			

SENIOR		14 credits	SENIOR	15 credits	
MECH 407	Mechanical Design Project I	4	MECH 408	Mechanical Design Project II	3
$300+$ STAT/M	MATH/CAAM/DSCI	3	SPEC	MECH elective \#2	3
LPAP	Lifetime Phys Activity elective	1	SPEC	MECH elective \#3	3
DIST	Distribution elective	3	OPEN	Open elective	3
SPEC	MECH elective \#1	3	OPEN	Open elective	3

[^23]| BASIC | General math \& science courses | 36 |
| ---: | ---: | :--- |
| Core courses in major | 42 | |
| ELECTIVE | MECH specialization electives | 9 |
| Open electives and LPAP | 19 | |
| REQUIREMENTS | FWIS and distribution courses | 21 |
| | Minimum credit required for the B.S. | 127 |

Of the 132 total degree credits, the B.S. in Mechanical Engineering requires at least 87 credits in general math and science courses and core courses.

Major Requirements

NUMBER CREDIT TITLE		
CAAM 210 or MECH 210	3	Introduction to Engineering Computation
CAAM 335	3	Matrix Analysis
CAAM 336	3	Differential Equations in Science and Engineering
CHEM 121	4*	General Chemistry I w/Lab
MATH 101/105	3	Single Variable Calculus I/AP or other credit in Calculus I
MATH 102/106	3	Single Variable Calculus II /AP or other credit in Calculus II
MATH 211	3	Ordinary Differential Equations and Linear Algebra
MATH 212	3	Multivariable Calculus
PHYS 101•	4^{*}	Mechanics w/Lab
PHYS 102.*	4^{*}	Electricity and Magnetism w/Lab
STAT/MECH/CAAM/DSCI 300+	3	Limited Elective
MECH 200	1	Sophomore Lab
MECH 202	3	Mechanics/Statics
MECH 203	3	Classical Thermodynamics
MECH 231	3	Mechanical Engineering Design Tools
MECH 310	3	Rigid Body Dynamics
MECH 315	3	Stress Analysis
MECH 350	3	Mechanical Elements
MECH 331	1	Junior Laboratory I (Mechanics Lab)
MECH 332	1	Junior Laboratory II (Thermo/Fluids Lab)
MECH 340	1	Industrial Processing Lab
MECH 343	4^{*}	Modeling of Dynamic Systems
MECH 371	3	Fluid Mechanics I
MECH 407	4	Mechanical Design Project I
MECH 408	3	Mechanical Design Project II
MECH 420	3	Fundamentals of Control Systems
MECH 481	3	Heat Transfer
SPECIALIZATION ELECTIVE	3	Mech Area of Specialization \#1
SPECIALIZATION ELECTIVE	3	Mech Area of Specialization \#2
SPECIALIZATION ELECTIVE	3	Mech Area of Specialization \#3

[^24]
Statistics

WEB LINKS	http://statistics.rice.edu/undergraduate-program/BA-statistics
FRANK ADVICE	STAT 310 is our core theory course in probability and statistics and is a prerequisite for almost all advanced courses. Learn it as best you can. Students without AP credit should consider STAT 280 or STAT 305 prior to STAT 310. An alternative to STAT 310 is STAT 315. Statistics majors are strongly encouraged to take STAT 310 over 315. Many courses use the statistical computing package, R, which you learn in STAT 405. Linear algebra back- ground is useful for STAT 410, a course on regression. Majors should take STAT 310 (or 315), 405 and 410 as soon as possi- ble. Science and/or pre-med students should consider STAT 305, but be aware that STAT 305 does not satisfy prerequisite require- ments as do STAT 310/315 for most advanced STAT courses.
ATUDICE FOR	AP credits are respected at the level of STAT 280 (introductory statistics course). Engineering students with AP credits should consider taking STAT 310 or 315. Be sure and satisfy the MATH prerequisites before STAT 310/315.
CREDIT	

RESEARCH	Many STAT majors participate in undergraduate research. If there is a professor whose research interests you, ask him or her if you may join his or her research group. Summer research opportunities on and off campus are also possible. Talk with an advisor for more information or visit the department's web page of undergraduate opportunities: https://statistics.rice.edu/undergraduate-program/opportunities. Deadlines for summer opportunities may be as early as Nov-Feb.
INTERNSHIPS	Summer internships are often available. These may or may not be paid. Talk with an advisor for more information or visit the department's undergraduate opportunities page: https://statistics.rice.edu/undergraduate-program/ opportuᄀnities. Deadlines for summer opportunities may be as early as Nov-Feb.
PROFESSIONAL ORGANIZATION	Houston Area Chapter of American Statistical Association (HACASA) welcomes student participants at their meetings. See https://community.amstat.org/houston/home/ for details. The Rice Data Science Club: datasci.rice.edu
INTERESTING COURSES FOR NON-MAJORS	General STAT 315 Statistics for Data Science STAT 385 Methods of Data Analysis and Data Science STAT 405 R for Data Science STAT 413 Machine Learning STAT 435 Data Science Projects Bio/EnvSci STAT 423 Probability in Bioinformatics and Genetics STAT 453 Biostatistics STAT 485 Environmental Statistics and Decision Making Financial Statistics STAT 482 Quantitative Financial Analytics STAT 486 Market Models STAT 421 Applied Time Series and Forecastingx

B.A. Statistics

Specializations: Finance, biostatistics/bioinformatics, environment, data science.
Students interested in statistics should consider taking STAT 280, 305 or 385 as early as freshman year. These courses are less mathematical than STAT 310 and 315 , but are excellent in developing foundations in statistics and data analysis skills.

Sample Degree Plan

THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN. THIS EXAMPLE ASSUMES A FRESHMAN WITHOUT CALCULUS I (MATH 101) AND WITHOUT AN INTRODUCTORY STATISTICS COURSE, INCLUDING AP STATISTICS. SOME FRESHMEN MATRICULATE WITH CREDIT FOR MATH 101 AND 102 AND AN INTRODUCTORY STATISTICS COURSE OR AP STATISTICS. IN THIS CASE, CONSULT A STATISTICS DEPARTMENT UNDERGRADUATE ADVISOR.

FALL

FRESHMAN 17 credits		17 credits	FRESHMAN		16 credits
MATH 101 or 105	Single Variable Calculus I	3	MATH 102 or 106	Single Variable Calculus II	3
STAT 280	Elementary Applied Statistics	4*	COMP 130	Elements of Algorithmic Comp	4
FWIS	Freshman Writing	3	OR 140	182 or CAAM 210 (3hr)	
OPEN	Open elective	3	DIST	Distribution elective	3
OPEN	Open elective	3	OPEN	Open elective	3
LPAP	Lifetime Phys Activity elective	1	OPEN	Open elective	3
SOPHO	MORE 15 credr		SOPHO	MORE 16 cr	
MATH 212	Multivariable Calculus	3	STAT 405	R for Data Science	3
STAT 310	Probability and Statistics	3	STAT 410	Linear Regression	4*
or 315			DIST	Distribution elective	3
DIST	Distribution elective	3	OPEN	Open elective	3
OPEN	Open elective	3	OPEN	Open elective	3
OPEN	Open elective	3			

JUNIOR		15 credits	JUNIOR		15 credits
SPEC	Specialization Elective	3	SPEC	Specialization elective	$3^{* *}$
MATH 354/3	355 Lin. Alg./Honors Lin. Alg.	3	SPEC	Specialization elective	3
or CAAM	334/335		SPEC	Specialization elective	3
DIST	Distribution elective	3	DIST	Distribution elective	3
COMP 330	Tools and Models-Data Science	3	OPEN	Open elective	3

 or DSCl 3023
 | SENIOR | 15 | credits | SEN IO R | | 15 credits |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SPEC | Specialization elective | 3 | STAT 450 | Senior Capstone Project | 3 |
| SPEC | Specialization elective | 3 | or DSCI 435 | | |
| DIST | Distribution elective | 3 | OPEN | Open elective | 3 |
| OPEN | Open elective | 3 | OPEN | Open elective | 3 |
| OPEN | Open elective | 3 | OPEN | Open elective | 3 |
| | | | OPEN | Open elective | 3 |

* In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
** STAT 305, 310, 315 and 385 may not count as electives for the statistics major. Students may request approval for up to one statistics-related course from other departments to count toward the specialization electives.

BASIC	General math \& science courses	12
Core courses in major	$19-23$	
REQUIREMENTS	Specialization electives	18
ELECTIVE	Open electives and LPAP	$46-50$
REQUIREMENTS	FWIS and distribution courses	21

Of the 120 total degree credits, the B.A. in Statistics requires 49-53 credits in general math and science, core, and specialization area courses.

Major Requirements

NUMBER CREDI		TITLE
MATH 101/105	3	Single Variable Calculus I/AP or other credit in Calculus I
MATH 102/106	3	Single Variable Calculus II/AP or other credit in Calculus I
MATH 212	3	Multivariable Calculus
MATH 354/355	3	Linear Algebra/Honors Linear Algebra
CAAM 334/335		Matrix Analysis for Data Science/Matrix Analysis
STAT 310/315	3	Probability and Statistics **/Statistics for Data Science*
STAT 410	4	Linear Regression
STAT 405	3	R for Data Science
STAT 450 or DSCI 435	3	Senior Capstone Project or Data Science Projects
$\begin{gathered} \text { COMP 130/140/182 } \\ \text { or CAAM } 210 \end{gathered}$	4	Elements of Algorithms and Computation/ Computational Thinking/Principles of Computing/ Algorithmic Thinking or Intro to Eng Computation
COMP	3-4	Introduction to Program Design/Principles of Parallel
$\begin{aligned} & 215 / 322 / 330 / 382 \\ & \text { or CAAM } \\ & 378 / 440 / 453 / 471 / 519 \\ & \text { or DSCl 302 } \end{aligned}$		Programming/ Tools and Models-Data Science/Reasoning About Algorithms or Intro to Operations Research and Optimization/ Applied Matrix Analysis/ Numerical Analysis I/ Linear and Integer Programming/Computational Science I or Intro to Data Science Tools and Models
SPEC*	3	Specialization elective
SPEC	3	Specialization elective
		At least three electives must be chosen from the following list of courses. - STAT 411 Advanced Statistical Methods - STAT 413 Introduction to Statistical Machine Learning - STAT 418 Probability - STAT 419 Statistical Inference - STAT 421 Time Series - STAT 425 Introduction to Bayesian Inference - STAT 453 Biostatistics - STAT 502 Neural Machine Learning I - STAT 541 Multivariate Statistics - STAT 545 Generalized Linear Models *305, 310, 315 and 385 may not count as electives. One statistics-related course from other departments may qualify as an elective. If the course appears on the O-group list, it is automatically approved. Otherwise, obtain advisor approval.

B.S. Statistics

Specializations: Finance, biostaitsicicslioionformatics, environment, data science. Students interested in statistics should consider taking STAT 280,305 or 385 as early as freshman year. These courses are less mathematical than STAT 310 and 315 , but are excellent in developing foundations in statistics and data analysis skills.

Sample Degree Plan

THIS IS ONE EXAMPLE OF MANY POSSIBLE SCHEDULES. CONSULT A DIVISIONAL OR DEPARTMENTAL ADVISOR TO CUSTOMIZE YOUR DEGREE PLAN. THIS EXAMPLE ASSUMES A FRESHMAN WITHOUT CALCULUS I (MATH 101) AND WITHOUT AN INTRODUCTORY STATISTICS COURSE, INCLUDING AP STATISTICS. SOME FRESHMEN MATRICULATE WITH CREDIT FOR MATH 101 AND 102 AND AN INTRODUCTORY STATISTICS COURSE OR AP STATISTICS. IN THIS CASE, CONSULT A STATISTICS DEPARTMENT UNDERGRADUATE ADVISOR.

FALL

SPRING

FRESHMAN		17 credits	FRESH	MAN 16 cr	16 credits
MATH 101 or 105	Single Variable Calculus I	3	MATH 102 or 106	Single Variable Calculus II	3
STAT 280	Elementary Applied Statistics	4*	COMP 130	Elements of Algorithmic Comp	4
FWIS	Freshman Writing	3	or 140/1	82 or CAAM 210 (3hr)	
OPEN	Open elective	3	DIST	Distribution elective	3
OPEN	Open elective	3	OPEN	Open elective	3
LPAP	Lifetime Phys Activity elective	1	OPEN	Open elective	3
SOPHO	MORE 15 cr		SOPHO	MORE 16 cre	
MATH 212	Multivariable Calculus	3	STAT 405	R for Data Science	3
STAT 310	Probability and Statistics	3	STAT 410	Linear Regression	4*
or 315			DIST	Distribution elective	3
DIST	Distribution elective	3	MATH 302	Elements of Analysis	3
OPEN	Open elective	3	or $321 / 33$	1/427	
OPEN	Open elective	3	OPEN	Open elective	3

JUNIOR		15 credits	JUNIO		15 credits
STAT 418	Probability	3	SPEC	Specialization elective	$3^{* *}$
MATH 354/3	355 Lin. Alg./Honors Lin. Alg.	3	STAT 419	Statistical Inference	3
or CAAM	334/335		SPEC	Specialization elective	3
DIST	Distribution elective	3	DIST	Distribution elective	3
COMP 330	Tools and Models-Data Science	3	OPEN	Open elective	3

SENIOR	15 credits	SENIOR		15 credits	
SPEC	Specialization elective	3	STAT 450	Senior Capstone Project	3
SPEC	Specialization elective	3	or DSCI 435		
DIST	Distribution elective	3	SPEC	Specialization elective	3
OPEN	Open elective	3	SPEC	Specialization elective	3
OPEN	Open elective	3	OPEN	Open elective	3
			OPEN	Open elective	3

* In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
** STAT 305, 310, 315 and 385 may not count as electives for the statistics major. Students may request approval for up to one statistics-related course from other departments to count toward the specialization electives.

BASIC	General math \& science courses	12
Core courses in major	$28-32$	
SLECIREMENTS	Specilization electives	18
REQUIREMENTS	Open electives and LPAP	$37-41$
	FWIS and distribution courses	21
Minimum credit required for the B.A.	120	

Of the 120 total degree credits, the B.A. in Statistics requires $58-62$ credits in general math and science, core, and specialization area courses.

Major Requirements

NUMBER CREDIT		TITLE
MATH 101/105	3	Single Variable Calculus I/AP or other credit in Calculus I
MATH 102/106	3	Single Variable Calculus II/AP or other credit in Calculus I
MATH 212	3	Multivariable Calculus
MATH 302 or MATH 321/331/427	3	Elements of Analysis
MATH 354/355	3	Linear Algebra /Honors Linear Algebra
CAAM 334/335		Matrix Analysis for Data Science/Matrix Analysis
STAT 310/315	3	Probability and Statistics **/Statistics for Data Science*
STAT 410	4	Linear Regression
STAT 405	3	R for Data Science
STAT 418	3	Probability
STAT 419	3	Statistical Inference
STAT 450 or DSCI 435	3	Senior Capstone Project or Data Science Projects
$\begin{aligned} & \text { COMP 130/ } \\ & \text { 140/182 or CAAM } 210 \end{aligned}$	4	Elements of Algorithms and Computation/ Computational Thinking/ Algorithmic Thinking or Intro to Engineering Computation
$\begin{aligned} & \text { COMP 215/322/330/382 } \\ & \text { or CAAM } \\ & 378 / 440 / 453 / 471 / 519 \\ & \text { or DSCI 302 } \end{aligned}$	3-4	Introduction to Program Design /Principles of Parallel Programming/ Tools and Models-Data Science/Reasoning About Algorithms or Intro to Operations Research and Optimization/ Applied Matrix Analysis/ Numerical Analysis I/ Linear and Integer Programming/ Computational Science I or Intro to Data Science Tools and Models
SPEC*	3	Specialization elective At least three electives must be chosen from the following list of courses.
SPEC	3	Specialization elective
SPEC	3	Specialization elective - STAT 411 Advanced Statistical Methods
SPEC	3	Specialization elective - STAT 413 Introduction to Statistical Machine Learning
SPEC	3	Specialization elective - STAT 419 Statistical Inference
SPEC	3	Specialization elective - STAT 421 Time Series - STAT 425 Introduction to Bayesian Inference - STAT 453 Biostatistics - STAT 502 Neural Machine Learning I - STAT 532 Foundations of Statistical Inference I - STAT 533 Foundations of Statistical Inference II - STAT 541 Multivariate Statistics - STAT 545 Generalized Linear Models - STAT 550 Nonparametric Function Estimation - STAT 581 Mathematical Probability I - STAT 582 Mathematical Probability II - STAT 650 Stochastic Control and Stochastic Diff. Eq. *305, 310, 315 and 385 may not count as electives. One statistics-related course from other departments may qualify as an elective. If the course appears on the O-group list, it is automatically approved. Otherwise, obtain advisor approval.

MAJOR ADVISORS

Bioengineering

Bilal Ghosn (transfers)	bghosn@rice.edu	Ext. 2648
Sabia Adibi	sabia.z.abidi@rice.edu	Ext. 8362
David Li	davidli@rice.edu	Ext. 7461
Ka-Yiu San	ksan@rice.edu	Ext. 5361
Renata Ramos	rfr1@rice.edu	Ext. 2203

Chemical and Biomolecular Engineering

Ken Cox (transfers)	krcox@rice.edu	Ext. 3529
Walter Chapman	wgchap@rice.edu	Ext. 4900
Thomas Senftle	tsentfle@rice.edu	Ext. 4714
Gerald McGlamery	gm35@rice.edu	Ext. 4242
Kyriacos Zygourakis	kyzy@rice.edu	Ext. 5208
Amanda Marciel	am152@rice.edu	Ext. 7231

Civil and Environmental Engineering

Phil Bedient	bedient@rice.edu	Ext. 4953
Leonardo Dueñas-Osorio	leonardo.duenas-osorio@rice.edu	Ext. 5292
Satish Nagarajaiah	nagaraja@rice.edu	Ext. 6207
Mason Tomson	mtomson@rice.edu	Ext. 6048

Computational and Applied Mathematics

Jesse Chan	jesse.chan@rice.edu	Ext. 6113
Keith Cooper	keith@rice.edu	Ext. 6013
Andrew Schaefer	andrew.schaefer@rice.edu	Ext. 4178

Computer Science

Alan Cox	alc@rice.edu	Ext. 5730
Scott Cutler	cutler@rice.edu	Ext. 2526
Risa Myers	risamyers@rice.edu	Ext. 2065
David Johnson	dbj@rice.edu	Ext. 3063
Swarat Chaudhuri	swarat.chaudhuri@rice.edu	Ext. 6314
Stephen Wong	swong@rice.edu	Ext. 3814
Devika Subramanian	devika@rice.edu	Ext. 5661

Electrical and Computer Engineering

Gary Woods (transfers)
Caleb Kemere
Santiago Segarra
Ray Simar
Peter Varman
Chong Xie
gary.woods@rice.edu caleb.kemere@rice.edu segarra@rice.edu ray.simar@rice.edu pjv@rice.edu chongxie@rice.edu

Ext. 3598
Ext. 6089
Ext. 3561
Ext. 2257
Ext. 3990
Ext. 8737

Materials Science and NanoEngineering

Edwin Thomas
Zachary Cordero
Peter Loos
elt@rice.edu
Ext. 3086
Zachary.cordero@rice.edu Ext. 2904
ploos@rice.edu
Ext. 4681

Mechanical Engineering

Matthew Elliott
Fathi Ghorbel
Eleazar Marquez
Andrew Meade
me26@rice.edu
ghorbel@rice.edu
eleazar.marquez@rice.edu meade@rice.edu

Ext. 2082
Ext. 3738
Ext. 3318
Ext. 5880

Statistics

DIVISIONAL ADVISORS

Baker

Matthew Elliott

Brown

Eleazar Marquez

Duncan

Gary Woods

Hanszen
Matthew Wettergreen

Jones

Gene Frantz
genf@rice.edu
Ext. 2839

Lovett

Lisa Biswall
biswal@rice.edu
Ext. 6055

Martel

Ray Simar

McMurtry

Christopher Jermaine
cmj4@rice.edu
Ext. 5690

Sid Rich

Rafael Verduzco
rafaelv@rice.edu
Ext. 6492

Wiess

Renata Ramos
renata.ramos@rice.edu
Ext. 2203

Will Rice

REQUREMENTS FOR BACHELOR'S DEGREES

Below is a checklist for some of the requirements for earning a bachelor's degree from Rice that apply to ALL majors. The Rice University General Announcements is the final authority on all academic regulations, including those pertaining to degree and major requirements. See "Information for Undergraduate Students: Graduation Requirements" in the Rice University General Announcements for more details and additional requirements. See http://rice.edu/catalog/, then Undergraduate Students, then Graduation Requirements https://ga.rice.edu/undergraduate-students/ academic-policies-procedures/graduation-requirements/.

Major requirements are specified by the department or program; for example, the specific math and science courses, core engineering courses, and engineering electives that you must complete to be awarded a degree in a given major.

Degree requirements are specified by the university; for example, the number of semester hours that must be taken to satisfy distribution requirements or the portion of upper-level course hours that must be taken at Rice.

General Rice Degree Requirements

In order to graduate with a bachelor's degree from Rice University, you must:
\square Be registered at Rice full time for at least four full fall and/or spring semesters.
\square Complete the requirements of at least one major degree program.
\square Complete at least 120 semester hours (some degree programs require more than 120 hours).
\square Complete at least 60 semester hours at Rice University.
\square Complete at least 48 hours of all degree work in upper-level courses (at the 300 level or higher).
\square Complete more than half of the upper-level courses in degree work at Rice.
\square Complete more than half of the upper-level courses in your major work at Rice (certain departments may specify a higher proportion).
\square Complete all Rice courses satisfying degree requirements with a cumulative grade point average of at least 1.67 or higher.
$\square \quad$ Complete all Rice courses satisfying major requirements with a cumulative grade point average of at least 2.00 or higher.
\square Satisfy the writing and communication requirement.
\square Satisfy the Lifetime Physical Activity Program requirement.
\square Complete courses to satisfy the distribution requirement.

ENGINEERING COURSES ACCESSIBLE TO FRESHMEN

For course descriptions, see http://courses.rice.edu.

THERE ARE NO PREREQUISITES FOR THESE COURSES:
ELEC $220 \quad$ Fundamentals of Computer Engineering (Fall \& Spring)
ENGI $101 \quad$ Introduction to Engineering Design (Spring)
ENGI $120 \quad$ Introduction to Engineering Design (Fall/Spring)
ENGI 140 Engineering Leadership Development (Fall/Spring)
ENGI $150 \quad$ Survey of Engineering Disciplines (Fall)
ENGI $242 \quad$ Communication for Engineers (Fall/Spring)
BIOE $202 \quad$ Careers in Bioengineering (Spring)
CEVE $101 \quad$ Fundamentals of Civil and Environmental Engineering (Fall)
CEVE 307 Energy and the Environment (Fall)
CEVE $322 \quad$ Engineering Economics (Spring)
COMP $140 \quad$ Computational Thinking (Fall)
COMP $130 \quad$ Elements of Algorithms and Computation (Fall)
COMP $160 \quad$ Introduction to Computer Game Creation (Fall)
COMP 162 Introduction to Game Content Creation (Fall)
MSNE 201 Introduction to NanoEngineering (Fall)
STAT 280 Elementary Applied Statistics (Fall \& Spring)

THESE COURSES HAVE MINIMAL PREREQUISITES:

CAAM 210	Introduction to Engineering Computation (Fall/Spring)
ELEC 240	Fundamentals of Electrical Engineering I Lab (Fall)
ELEC 241	Fundamentals of Electrical Engineering I (Fall)
MECH 200	Classical Thermodynamics (Spring)
MECH 202	Mechanics/Statics (Fall)
MECH/CEVE 211	Engineering Mechanics (Fall/Spring)
STAT 305	Introduction to Statistics for Biosciences (Fall)
STAT 310	Probablity and Statistics (Fall/Spring)
STAT 315	Statistics for Data Science (Fall/Spring)

图 RICE

[^0]: ＊In addition to class hours，these courses have a regularly scheduled lab and／or discussion session that must fit into your schedule．
 \＃Students may take BIOE 341 （Cell and Molecular Biology for Engineers）in place of BIOC 341.
 －When registering for PHYS 101，you must also register for PHYS 103，the discussion section for 101.
 －• When registering for PHYS 102，you must also register for PHYS 104，the discussion section for 102.
 § When registering for CHEM 211，you must also register for CHEM 213，the discussion section for 211.
 \ddagger Students may choose to replace one and only one of these courses with one or more additional approved technical electives that account for the engineering points assigned to that course．Please speak to an academic advisor prior to doing so．

[^1]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 ** Must have 6 engineering points within 3 TECH elective courses
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 - When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102. § When registering for CHEM 211, you must also register for CHEM 213, the discussion section for 211.
 \ddagger Students may choose to replace one and only one of these courses with one or more additional approved technical electives that account for the engineering points assigned to that course. Please speak to an academic advisor prior to doing so.

[^2]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 - When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.
 § When registering for CHEM 211, you must also register for CHEM 213, the discussion section for 211.
 \ddagger When registering for CHEM 212, you must also register for CHEM 214, the discussion section for 212.

[^3]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 - When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.
 § When registering for CHEM 211, you must also register for CHEM 213, the discussion section for 211. \ddagger When registering for CHEM 212, you must also register for CHEM 214, the discussion section for 212.

[^4]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 - When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.
 § When registering for CHEM 211, you must also register for CHEM 213, the discussion section for 211.
 \ddagger When registering for CHEM 212, you must also register for CHEM 214, the discussion section for 212.

[^5]: *For Area I \& II Focus, CEVE 316 and 401 are required and 471/472 is an Area IV Elective.
 **For Areas III and IV Focus, CEVE 471/472 is a requirement and CEVE 401 is an Area I elective.
 ${ }^{* * *}$ FAC-8 CEVE courses (2 in each focus area I-IV) required for breadth
 ${ }^{* * * * F A S-2 ~ a d d i t i o n a l ~ C E V E ~ c o u r s e s ~ i n ~ o n e ~ f o c u s ~ a r e a ~(I-I V) ~ r e q u i r e d ~ f o r ~ s p e c i a l i z a t i o n ~}$

[^6]: * The Engineering BS is broken down into 4 focus areas.
 ${ }^{1}$. Environmental Engineering - CEVE 302, 307, 308, 404, 406, 411, 434, 442, 444 or other approved course.

 2. Hydrology and Water Resources - CEVE 314, 412, 418, 420, 512, 518 or other approved course.
 3. Structural Engineering and Mechanics - CEVE 325, 400, 427, 431, 432, 441, 476, 496 or other approved course.
 4. Urban Infrastructure, Reliability and Management - CEVE 301, 313, 320, 424, 452, 460, 492 or other approved course. *For Area I \& II Focus, CEVE 316 and 401 are required and 471/472 is an Area IV Elective.
 ${ }^{* *}$ For Areas III and IV Focus, CEVE 471/472 is a requirement and CEVE 401 is an Area I elective.
 ${ }^{* * *}$ FAC-8 CEVE courses (2 in each focus area I-IV) required for breadth
 ${ }^{* * * * F A S-2 ~ a d d i t i o n a l ~ C E V E ~ c o u r s e s ~ i n ~ o n e ~ f o c u s ~ a r e a ~(I-I V) ~ r e q u i r e d ~ f o r ~ s p e c i a l i z a t i o n ~}$
[^7]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 \dagger Students with prior experience with calculus may replace this class with a 3-credit quantitative elective at the 200-level or above, as approved by a CAAM undergraduate advisor. (This quantitative elective is in addition to the four required specialization electives.)

[^8]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 \dagger Students with prior experience with calculus may replace this class with a 3-credit quantitative elective at the 200-level or above, as approved by a CAAM undergraduate advisor. (This quantitative elective is in addition to the four required specialization electives.)

[^9]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.

[^10]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.

[^11]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 - When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.

[^12]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 -• When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.

[^13]: *Comp 140 in the fall followed by COMP 182 in the spring of freshman year is strongly recommended for Computer Engineering

[^14]: * Comp 140 in the fall followed by COMP 182 in the spring of freshman year is strongly recommended for Computer Engineering

[^15]: * Comp 140 in the fall followed by COMP 182 in the spring of freshman year is strongly recommended for Computer Engineering

[^16]: * Comp 140 in the fall followed by COMP 182 in the spring of freshman year is strongly recommended for Computer Engineering

[^17]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 -• When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.
 *** MSNE 415 is offered in the spring

[^18]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.

[^19]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 *** CAAM 335 is offered in the fall
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 - When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.
 § When registering for CHEM 211, you must also register for CHEM 213, the discussion section for 211.

[^20]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 -• When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.
 § When registering for CHEM 211, you must also register for CHEM 213, the discussion section for 211.

[^21]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 - When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.

[^22]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 - When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.

[^23]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 - When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.

[^24]: * In addition to class hours, these courses have a regularly scheduled lab and/or discussion session that must fit into your schedule.
 - When registering for PHYS 101, you must also register for PHYS 103, the discussion section for 101.
 - When registering for PHYS 102, you must also register for PHYS 104, the discussion section for 102.

